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Abstract

Este proyecto se centró en la implementación y caracterización de técnicas de

imagen destructivas y no destructivas en gases cuánticos ultrafŕıos de 6Li. Implementé

un arreglo óptico capaz de obtener imágenes de alta resolución de la nube atómica

(≈ 2µm), desarrollé las herramientas necesarias para la correcta determinación de las

propiedades de las nubes mediante la técnica de imagen por absorción, y establećı un

método para obtener las constantes de calibración de esta técnica de imagen.

Además, implementé la técnica de imagen no destructiva conocida como contraste

de fase; esta técnica mide la densidad atómica relacionando la fase inducida en el

haz de prueba con la densidad de la nube. El sistema óptico es capaz de realizar

múltiples imágenes de alta resolución de la misma muestra, lo que permite estudiar

las propiedades dinámicas de los gases cuánticos.

Finalmente, para aumentar la calidad de los perfiles de densidad adquiridos, de-

sarrollé un algoritmo capaz de eliminar artefactos de alta frecuencia en las imágenes

adquiridas, sin alterar la distribución del perfil de densidad y aumentando la señal a

ruido.

This project is centered on the experimental implementation and characterization

of both destructive and non-destructive imaging techniques for ultracold quantum

gases of 6Li. I developed a new optical setup capable of imaging the atoms with high-

resolution (≈ 2µm). I developed the tools necessary for the correct determination of

the cloud properties using absorption imaging. I established a method to obtain the

calibration constants along both imaging axes.

Additionally, I implemented the non-destructive phase-contrast imaging tech-

nique. This technique measures the atomic density by connecting the induced phase

on the probe beam to the cloud’s density. The optical system is suitable for perform-

ing multiple high-resolution images of the same atomic sample, allowing studying the

dynamic properties of quantum gases.

Finally, to further increase the quality of the acquired density profiles, I developed

an algorithm capable of removing high-frequency artifacts from the images without

altering the density profile. Hence, increasing the signal-to-noise ratio a factor of two.
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Chapter 1

Introduction

Weakly interacting Bose-Einstein condensates and strongly interacting Fermi sys-

tems have been realized experimentally in ultracold gases for more than two decades

[1, 2]. This kind of experiment allowed the creation of a new paradigm for study-

ing condensed matter systems. Indeed, both theoretical and experimental effort has

brought a deep understanding of the physics underlying complex systems and phe-

nomena such as high Tc-superconductivity and superfluidity [1, 3]. Even today,

fundamental aspects of the topic are still under active research.

Throughout the two decades of research in the area, there have been multiple im-

provements in the imaging methods [2]. The most relevant one being the use of CCD

cameras instead of single fluorescence detectors. The basis of these imaging techniques

relies on the interaction between light and matter. Various imaging techniques de-

pend on distinct atomic responses, the most common being the absorption signal [2],

accompanied by the induced phase shift on the probe beam [2, 4–6]. The most used

and simple technique to implement is the resonant one, known as absorption imaging.

Resonant imaging can be classified into two categories depending on the probe’s

intensity [7, 8]. The low-intensity regime is more robust since it requires the least

number of calibration parameters, at most one. This feature allows for a high signal-

to-noise ratio in low magnification setups when dealing with atomic clouds with rel-

atively low optical densities. However, this imaging technique is useless for high

magnification setups due to the low signal registered into the CCD sensors. Addi-

tionally, the absorption signal saturates for high-density samples, causing distortion

effects on the density profiles. Solving this issue requires increasing the probe’s in-

tensity, entering the high-intensity regime. In this regime, the number of calibration
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parameters increases [7, 8], making it more susceptible to calibration errors.

The absorption imaging technique is most convenient wherever static properties

are needed to be measured. Nevertheless, it is still possible to extract dynamic prop-

erties using absorption imaging. Though, the number of experimental runs required

increases significantly. Such measurements are time-consuming and susceptible to

run-to-run fluctuations and drifts in the experimental apparatus, causing a higher

dispersion in the data. This problem appears because this type of imaging technique

destroys the sample after probing. One way to overcome this problem is to use a

non-destructive imaging techniques [2]. This type of imaging has the advantage that

reduces the heating induced by the probe beam employing non-resonant light [5].

Non-destructive imaging techniques are becoming more commonly used in recent

years [5, 6, 9, 10]. These techniques allowed a close examination of the superfluid

transition [6] and the propagation of excitations in the gas by measuring the same

sample at various times [10–13]. These techniques can be separated into groups

depending on the measured effect. Dispersive imaging techniques measure the phase

shift in the probe beam caused by the atomic index of refraction, for instance, phase-

contrast [13], diffraction contrast [14], and holographic imaging [10]. Polarization-

dependent methods measure the Faraday rotation on the probe polarization as a

function of the gas density [5, 9]. Partial-transfer absorption imaging consists of

transferring a small fraction of the gas into a different state and imaging it using

absorption imaging [15, 16].

In this context, the Laboratory for Ultracold Matter at UNAM (LMU) aims to

produce and study diverse superfluid phenomena in strongly correlated Fermi gases

[17]. This kind of system is of particular interest due to its complexity to describe

theoretically, and a complete theory still needs to be developed [1, 3]. A central

aspect of these systems is the possibility to explore very distinct interacting regimes

depending on the gas inter-atomic interactions. If the inter-atomic interactions are

attractive, it is possible to form a gas of Cooper-like pairs described by the Bardeen-

Cooper-Schrieffer (BCS) theory. On the contrary, if the inter-atomic interactions are

repulsive, it is possible to create tightly bound pairs of atoms having bosonic statistics.

In this interaction regime, the system can undergo a phase transition into a Bose-

Einstein condensate (BEC) of molecules [1, 3]. Ultracold atom experiments offer

the possibility to explore a whole range of interaction regimes employing Feshbach

resonances. In particular, it is possible to continuously change the system’s interaction
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traversing the so-called BEC-BCS crossover. Notably, the LMU works with gases of

fermionic lithium. This specific isotope of lithium has the advantage of having a broad

and experimentally accessible magnetic Feshbach resonance [18], allowing studying

diverse superfluid phenomena in these strongly correlated systems [19–21].

In this thesis, we aimed to implement a high-resolution, high-magnification imag-

ing setup capable of acquiring images using both absorption and phase-contrast imag-

ing. In this approach, we first focus on the implementation of the high-magnification

imaging setup. Next, we thoroughly characterized the high-intensity absorption imag-

ing regime. Alongside the characterization, we developed an algorithm capable of

improving the signal-to-noise ratio of the measured density profiles. Lastly, we fo-

cused on the implementation of the phase-contrast imaging technique, enabling us to

further study the dynamic properties of multiple collective modes.
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Chapter 2

Theory of ultracold atoms

In this chapter, I will discuss the concept of interacting atomic gases. In particular,

I’ll start describing the density distribution of a trapped ideal Fermi gas in the

quantum degenerate regime. Then, I’ll consider the case of interacting particles

analyzing the two-body scattering problem. In ultracold quantum gases, the scattering

properties can be manipulated using magnetic Feshbach resonances, allowing the

study of different interacting regimes, particularly the BEC-BCS crossover. Finally,

I will discuss the atomic properties of lithium in the presence of magnetic fields.

2.1. Ideal quantum gases in a harmonic trap

In ultracold quantum gas experiments, trapping potentials confine the gases spa-

cially. In most cases, as in ours, the trapping potential can be approximated as

harmonic near their minimum [3]:

V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.1)

where m is the mass of the atoms being confined, and ωi the trap frequencies along

the i’th direction. For now, we’ll consider the system as ideal, meaning the particles

does not interact with each other. When the thermal energy, kBT , is larger than the

harmonic potential energy levels, ~ωi, the occupation probability of the state with

position r, and momentum p is given by [3]:

f(r,p) =
1

e(p2/2m+V (r)−µ)/kBT ± 1
, (2.2)
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where p2 = p · p, µ is the chemical potential, and V (r) is the external potential, in

our case the harmonic one. The ± sign corresponds to the quantum statistic distri-

butions. For fermions, the sign is positive leading to the Fermi-Dirac distribution,

while negative for bosons leading to the Bose-Einstein distribution. Integrating (2.2)

in momentum space, we obtain the density distribution [3]:

n(r) =
1

(2π~)3

∫
f(r,p)dp = ∓ 1

λ3
DB

Li3/2(∓e(µ−V (r)/kBT ), (2.3)

where Li3/2(z) is the polylogarithmic function of order 3/2, defined as:

Liν(z) =
∞∑
k=1

zk

kν
. (2.4)

In the high-temperature regime, the effects of the particles statistics become neg-

ligible, recovering the classical limit. In this limit, the density distribution can be

approximated as a gaussian function of the form:

ncl(r) =
N

π3/2σxσyσz
e
−
∑
i

(
xi
σi

)2

, (2.5)

where σi = 2kBT
mωi

for i = x, y, z, and N the total number of atoms in the gas.

In the low-temperature regime, the quantum effects dominate. In this regime,

the density distribution for bosons and fermions have very distinct profiles. Fermions

repel from each other due to the Pauli exclusion principle. For bosons, this Pauli

repulsion doesn’t exist leading to a more compressed density profile. For fermions in

the zero temperature limit, the states with energy less than the Fermi energy, EF , are

occupied, while the rest are not. In this limit, the Fermi-Dirac distribution becomes:

f(r,p) =

{
1 if p2/2m+ V (r) < EF

0 if p2/2m+ V (r) > EF .
(2.6)

At T = 0, the chemical potential coincides with the Fermi energy. Using the

harmonic potential, the density distribution in the zero temperature limit is [3]:

nσ(r) =
8

π

Nσ

RFxRFyRFz

{
max

[
0, 1−

∑
i

(
xi
RFxi

)2
]}3/2

, (2.7)
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with RFxi
=
√

2Eho
F /mω

2
i are the Fermi radii, Nσ is the number of atoms in the σ

spin component, and ω̄ = (ωxωyωz)
1/3 the geometrical average trap frequency. For

finite temperatures, the density profiles can be calculated using (2.3). Qualitatively

the profiles changes smoothly from the gaussian distribution to the Thomas-Fermi

limit (2.7). To calculate the Fermi energy, we integrate both in space and momentum

the Fermi-Dirac distribution at T = 0 [3]:

Nσ =
1

(2π~)3

∫ ∫
f(r,p)dpdr =

∫ EF

0

g(ε)dε

e(ε−µ)/kBT + 1
, (2.8)

where g(ε) is the density of states. For the harmonic potential gho(ε) = ε2/2(~ω̄)3.

Therefore,

Nσ =
1

2(~ω̄)3

∫ EhoF

0

ε2dε→ Eho
F = ~ω̄(6Nσ)1/3 (2.9)

Besides the Fermi energy, it is convenient to define the Fermi temperature, TF =

EF/kB, and the Fermi momentum, kF =
√

2mEF/~2.

2.2. Interacting quantum gases

For dilute gases, the many-body interactions are precisely described by a small

number of parameters [3, 22]. Those parameters emerge from the two-body collision

analysis. In the regime of low temperatures and long mean interparticle distance, the

system scattering properties are considerably simpler.

The analysis of the two-body scattering process requires solving the Schrödinger

equation in the relative coordinates system. A crucial step when solving this problem

is to expand the solution into partial waves with different angular momenta. Higher

angular momenta components correspond to higher energy states. Hence, in the low

temperature and low energy regime, the scattering processes are essentially described

by the l = 0 (s-wave) and l = 1 (p-wave) angular momenta components. An addi-

tional constraint we need to contemplate is the antisymmetry of the wave function

for identical fermions. The wave function antisymmetric nature implies that identical

fermions don’t interact through s-wave scattering but through p-wave scattering. For

sufficiently low temperatures, scattering through p-wave is suppressed for identical

fermions [23], producing an almost ideal single-component Fermi gas. For this reason,
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we’ll consider the problem of a mixture of fermions with two spin components. In this

case, the scattering between the same spin component is suppressed, while the scat-

tering among distinct spin components isn’t. In fact, for different spin components,

the interaction is characterized by the s-wave scattering properties, in particular, the

s-wave scattering length [24].

2.2.1. Tuning the interaction: Feshbach Resonances

In addition to the two spin mixture, we need to consider the atom’s internal

structure. Due to the hyperfine coupling interaction, the collision process drastically

changes, giving rise to the so-called Feshbach resonance [24, 25]. The presence of

these resonances allows us to manipulate the s-wave scattering length employing an

external magnetic field (figure 2.1b). Feshbach resonances can be exploited to tune

from attractive to repulsive, from weak to strongly interacting regimes. Notably,

lithium has the broadest Feshbach resonances, making it the most used species to

explore these interaction regimes [24].

(a)
(b)

Figure 2.1: a) Triplet (open channel) and singlet (closed channel) scattering
potential for two colliding atoms. The singlet scattering potential energy can be

shifted by applying a bias magnetic field. The Feshbach resonance occurs when the
bound state energy coincides with the collision energy (dashed line). b) Feshbach

resonances between the three lowest hyperfine states of 6Li, see figure 2.4.

For single valence electrons atoms, the Feshbach resonance requires the presence

of two different scattering potentials or channels, known as open and closed channels.

In this case, the singlet and triplet configuration of the electron spin (see figure 2.1a).

These potentials are coupled by the hyperfine interaction [25]. Consequently, the

energy separation between both potentials can be manipulated employing an external
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bias magnetic field (because of their different magnetic moments).

Whenever the closed channel has a bound state close to the collision energy (cor-

responding to the open channel energy) the coupling between both channels becomes

significantly greater [25]. Indeed, the crossing of the closed channel bound state

and the collision’s energy gives rise to a Feshbach resonance. Close to the Feshbach

resonance, the scattering length is well approximated by [26]:

as(B) = abg

(
1− ∆

B −B0

)
, (2.10)

where ∆ is the magnetic resonance width, B0 is the magnetic field where the crossing

occurs (the center of the resonance), and abg is the off-resonance background scattering

length. The Feshbach resonances between the three lowest hyperfine states of 6Li are

shown in Figure 2.1b. These resonances have an extremely large width (∆ ≈ 300G

[18]) compared with other atomic species [24].

2.2.2. The BEC-BCS crossover

The possibility of changing the inter-atomic interaction by varying an external

bias magnetic field makes ultracold atoms the perfect system for studying multiple

many-body physics such as superfluidity and high-Tc superconductors [1, 2, 26].

Moreover, the BEC-BCS crossover allows the possibility of tuning the underlying

quantum statistics. From the BEC side, having bosonic statistics to the BCS side

with fermionic statistics.

To describe the distinct interaction regimes, it is essential to parametrize the inter-

action coupling within the system using a single parameter. The two main parameters

describing the interaction strength are the system’s density and the s-wave scattering

length. With these parameters, it is possible to construct the dimensionless parame-

ter 1/kFas, where kF is the density-dependent Fermi momentum, and as the s-wave

scattering length.

For temperatures below the Fermi temperature, it is possible to distinguish be-

tween three distinct regimes:

1/kFas � 1: In this regime, atoms with different spin states can couple together

and form tightly bound molecules. The system behaves like a bosonic one and

can undergo a phase transition into a Bose-Einstein condensate (BEC) when
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the temperature is below the critical temperature.

1/kFas > 1: In this regime, atoms with different spin states can couple together

and form bound molecules. The system can undergo a phase transition into a

BEC when the temperature is below the critical temperature. However, quan-

tum depletion effects modify the behavior of the condensed faction as a function

of the temperature [26].

1/kFas � −1: In this regime, the atoms form long-range Cooper pairs-like

described by the Bardeen-Cooper-Schrieffer (BCS) theory. In principle, the

system can undergo a superfluid transition when the temperature is below the

critical temperature. In this regime, the Cooper pairs have a characteristic size

larger than the inter-particle spacing of the gas.

−1 < 1/kFas < 1: This regime is known as the BEC-BCS crossover, meaning

it’s an intermediate regime between BEC and BCS. Like the BCS regime, it

is characterized by the formation of Cooper pairs but the Cooper pair size is

comparable with the inter-particle spacing.

A more complex representation of the different phases of the BCS to BEC crossover

is shown in figure 2.2 [26].

One of the main differences between all the regimes is the superfluid critical tem-

perature shown in figure 2.2 as the line delimiting the yellow region. On the BEC

side, the critical temperature tends to the one of a gas of molecules with twice the

atomic mass. On the BCS side, the critical temperature decreases exponentially with

1/kF |as|.

In this work, we’ll mainly focus on the BEC side of the resonance. The main

reason being the cloud’s density. As previously mentioned, at low temperatures, the

bosonic gas density is always higher than that of a fermionic gas. This is exemplified

in section 3.3.2, particularly in figure 3.20. The higher the density is, the higher

the distortion effects of the imaging techniques, especially in the absorption imaging

technique, see section 4.2.
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Figure 2.2: Qualitative phase diagram of the BCS to BEC crossover [27] as a
function of the temperature T/TF and the dimensionless coupling 1/kFas. Figure

from [26].

2.3. Lithium in the presence of magnetic fields

The fermionic isotope of lithium has in its ground state, 22S1/2, a single valence

electron with total angular momentum Ĵ = L̂ + Ŝ = 0 + 1/2 = 1/2. The first two

exited states corresponds to the 22P1/2 and 22P3/2 states, with Ĵ = 1/2 and Ĵ = 3/2

respectively. The optical transitions between the 22S1/2 state to the 22P1/2 and 22P3/2

states are respectively known as D1 and D2. Figure 2.3 sketches the fine structure of

the 6Li atom, along with the relevant optical transitions [28].

To model the effect of both the hyperfine splitting and the external magnetic we’ll

consider the following hamiltonian [29]:

H = H0 +HHF +HB = H0 + AI · J− (µBgJJ + µNgII) ·B, (2.11)

where H0 describe the fine structure hamiltonian of an atom, HFH the hyperfine

hamiltonian, and HB the magnetic interaction hamiltonian. The constants gJ and

gI are the electronic and nuclear Landé factors respectively. Table 2.1 shows the

specific values of the Landé g-factors for the different electronic and nuclear states of

fermionic lithium. The hyperfine structure of the atom is describe by the total angular
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Figure 2.3: 6Li fine and hyperfine structure at zero external magnetic field. The two
relevant optical transitions used in the experiment are the D1 and D2 lines. Both
optical transitions have the same linewidth Γ = 2π × 5.87 MHz [28]. Note that the

fine splitting of the 22P3/2 level is lower than the transition linewidth.

momentum of the outermost electron J and the nuclear spin I. The hyperfine shift

as a function of the external magnetic field is given by [29]:

1

h
∆E = aI · J− 1

h
(µBgJJ + µNgII) ·B, (2.12)

where a is the hyperfine constant expressed in units of Hz. Considering a constant

bias magnetic field of the form B = Bz ẑ, then the energy shift is given by:

Symbol Value a[MHz]
gI -0.0004476540

gJ(22S1/2) 2.0023010 152.1368407
gJ(22P1/2) 0.6668 17.4
gJ(22P3/2) 1.335 -1.1

Table 2.1: Landé factors for 6Li [28].

1

h
∆E = aIzJz +

a

2
(J+I− + J−I+) +

(µBgJ
h

Jz +
µNgI
h

Iz

)
Bz, (2.13)

where J± are the raising and lowering operators respectively. The hamiltonian contri-
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bution shown in (2.13) can be solved analytically for J = 1/2, known as the Breit-Rabi

solution. The energy splitting is given by [29, 30]:

1

h
∆EF=I± 1

2
= −(I + 1/2)

2(2I + 1)
a+

µNgImFB

h
± (I + 1/2)

2
a

√
1 +

2mF

I + 1/2
x+ x2, (2.14)

where x =
(
µBgJ−µNgI
ah(I+1/2)

)
B. For the J 6= 1/2 the solution to (2.13) must be obtained

numerically. Figure 2.4 show the energy shifts of the 22S1/2, 22P1/2 and 22P3/2 states

of 6Li as a function of the external magnetic field.

Figure 2.4: Hyperfine splitting as a function of the external magnetic field for the
states 22S1/2, 22P1/2 and 22P3/2 of 6Li. For the former two states, we use the

Breit-Rabi formula (2.14), meanwhile for the state 22P3/2 we must solve numerically
(2.13).

At zero external magnetic field, the ground state 22S1/2 splits in two hyperfine

levels:
∣∣22S1/2, F = 1/2

〉
and

∣∣22S1/2, F = 3/2
〉

separated by 228.2 MHz. The state

22P3/2 hyperfine splitting is unresolved, meaning the separation between the states

with F = 1/2 and F = 5/2 is less than the transition natural linewidth, as shown in

Figure 2.3.

For low magnetic fields (B . 30 G for 6Li) the Zeeman effect is a weak perturbation

to the hyperfine structure, producing the expected linear Zeeman effect. In this

regime, the description using the |F,mF 〉 is still valid. For higher magnetic fields,

this is not the case [29]. At higher fields, the Zeeman effect dominates over the

hyperfine structure, causing the electron and nuclear spin to decouple. This regime is

also known as the Paschen-Back regime. In this regime, the F description is no longer

valid requiring the electronic and nuclear spin projections, mJ and mI , to describe the

states correctly. In the Paschen-Back regime, the hyperfine splitting between states
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with the same mJ quantum number remains almost constant, as shown in figure 2.4.

This is key for the implementation of optical and radio-frequency transitions between

these states.
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Chapter 3

Experimental Setup and Procedure

In this chapter, we present the ultra-high vacuum system and the optical setup for

cooling and trapping an atomic cloud of 6Li. Additionally, we describe the imaging

setup we implemented to image the atoms across different interaction regimes.

Finally, we describe the experimental procedure for the production of such ultracold

quantum gases.

3.1. Experimental setup

In this section, we will outline the experimental setup for the production of ul-

tracold quantum gases. We will describe the vacuum and laser system for optically

cooling the atoms.

3.1.1. Ultra-high vacuum system

The vacuum system, sketched in figure 3.1, consists of an oven, a differential

pumping stage, a Zeeman slower, and the science chamber where all experiments are

performed [17]. Inside the oven, there is a 50/50 mixture of enriched samples of 6Li

and 7Li, although, for the rest of this thesis, we will focus only on the fermionic

isotope: 6Li. The oven is heated to 450◦C to produce sufficient vapor pressure inside

the vacuum system to generate an atomic beam that is later collimated using a

4 mm diameter nozzle and by a copper cold finger [31]. The atomic beam then

passes through the differential pumping stage, consisting of two narrow aligned tubes

separated by 25 mm from each other. The differential pumping stage is designed to
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Figure 3.1: Sketch of the Ultra-High vacuum system, image taken from [17].

keep a pressure difference between the oven and the science chamber to up to five

orders of magnitude. In this way, the pressure in the main chamber always remains

below 10−11 Torr while the oven pressure varies from below 10−11 Torr when the

oven is below 100◦C (overnight or standby mode) to 10−9 Torr when the oven is at a

temperature of 450◦C (actively running the experiment).

After the atomic beam passes through the differential pumping stage, it enters the

Zeeman slower. In this section, the atoms are decelerated from velocities in the order

of 960 m/s down to velocities below 60 m/s [32]. Finally, the slow atomic beam enters

the science chamber, where they are confined in a magneto-optical trap (MOT) and

further cooled to degeneracy see section 3.3 for more details.

3.1.2. Laser system

Two different laser systems are required for the production and study of ultracold

atoms: the first one is for laser cooling and imaging the atoms using light close to

the D optical transitions, while the second one is to create a trapping potential using

light very far detuned from any transition.

Laser cooling system

The optical transitions involved in the laser cooling stage are the D1 and D2

transitions of 6Li, see figure 3.2a. The D2 line is used for standard Doppler-limited

laser cooling techniques, while the D1 is needed to achieve sub-Doppler temperatures

[33], see section 3.3 for more details.

For the standard laser cooling techniques using the D2 transition, we use the
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Figure 3.2: a) Hyperfine structure of 6Li, showing the D2 and D1 transitions at zero
external magnetic field. b) and c) Hyperfine splitting in the presence of a external

magnetic field of the 22P3/2 and 22S1/2 respectively.

22S1/2 F = 3/2 → 22P3/2 F = 5/2 transition as the cooling transition while the

22S1/2 F = 1/2 → 22P3/2 F = 3/2 transition as the repumper transition. The

frequency difference between both transitions is approximately the hyperfine splitting

of the 22S1/2 manifold, about 228.2 MHz. Since the frequency difference is small, it

is possible to create both frequencies from a unique laser source and a combination

of acousto-optic modulators (AOM’s), see figure 3.4.

To generate the D2 frequencies, we use an extended cavity diode laser in cat-eye

configuration1, from which we obtain 30 mW of power. The linewidth of this laser is

below 100 kHz, well beneath the natural linewidth of the D2 transition (5.8 MHz).

The laser output is divided into two beams: one going to the saturated absorption

spectroscopy (SAS) setup to stabilizes and lock the laser frequency using an atomic

reference (see figure 3.3b). The other beam is amplified ten times by a Tapered

1Model CEL002 from MOGLabs.
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Amplifier (TA)2 and further split into two beams using a 50:50 beam splitter. These

beams will then become the cooling and repumper transitions after controlling their

frequency using two AOM’s in a double-pass configuration. Next, the two beams are

amplified by a TA and later recombined using a 50:50 beam splitter. In this way, we

produce two beams with both frequencies. These beams will serve first as the light

for the MOT beams, and the other as Zeeman slower and imaging light. The details

of the laser setup can be found in [17, 33] and in figure 3.4 (The imaging AOM’s

system will be detailed in section 3.2).

Figure 3.3: Saturated absorption spectroscopy error signal of the a) D1 and b) D2
transitions, the zero frequency is the locking position of the lasers.

To generate the D1 frequencies, we use a second extended cavity diode laser in

cat-eye configuration, the same model as the D2 laser source. Just as in the case

of the D2, the laser is locked to an atomic reference using a SAS scheme see figure

3.3a. To implement the D1 sub-Doppler cooling stage, we require two frequencies:

22S1/2 F = 3/2→ 22P1/2 F = 3/2 and 22S1/2 F = 3/2→ 22P1/2 F = 3/2, see figure

3.2, separated by the hyperfine splitting of the 22S1/2 manifold, about 228.2 MHz,

same as for the D2 frequencies. For this reason, before the first TA amplification

stage of the D2, we mix both the D2 and D1 lasers beams using a polarizing beam

splitter. This setup allows us to use the same laser system already in place for the

D2 frequencies to generate the required D1 frequencies.

2Model MOA002 from MOGLabs.
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Figure 3.4: Simplified scheme of the laser cooling setup showing the main features of
the system, taken from [17].

Optical Dipole Trap

We employ a high power infrared beam to generate the conservative optical po-

tential. The infrared beam originates from a 1070 nm multi-mode ytterbium fiber

laser from IPG Photonics, with a maximum power output of 200 W. We control the

laser power arriving at the science chamber in two different ways. First, from 170 to

10 W, we control it by changing the power output of the IPG laser itself. For lower

intensities, we control the efficiency of the diffracted order of an AOM, see figure 3.5.

This last method allows us to stabilize the power arriving at the science chamber via

a PID feedback loop. The efficiency of the AOM is regulated using a PID controller3.

The reference setpoint is fixed by an external analog signal coming from our con-

trol system, while the measured value is obtained from the signal of a photo-diode

measuring the light from a transmission leak of a mirror in the laser path, see figure

3.5.

In addition to controlling the laser power arriving at the science chamber, we can

dynamically modify the laser cross-section using a particular input signal to the RF-

3Model SRS SIM960.
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Figure 3.5: Detailed ODT laser setup. The upper section shows the required setup
to generate the ODT beam with the required power and shape. After the AOM, the
0th order is denoted by a dashed line while the first order by a continuous line. The

beam up shown is necessary to adjust the height of the ODT beam. The lower
section shows its arrangement in the science chamber. Image taken from [34].

frequency channel of the AOM. In this way, we can change the potential’s transverse

position and shape, as shown in figure 3.6a. For more details about the ODT setup

implementation see [34, 35].

(a) (b)

Figure 3.6: a) ODT beam waists as a function of the beam’s modulation amplitude.
b) Effect of increasing (from left to right) the ODT beam waist on the atomic cloud.

Images taken from [34].
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3.1.3. Science chamber

The science chamber is a custom-made octagonal stainless-steel cell from Kim-

ball Physics [31]. As sketched in figure 3.7a, along its vertical axis it has two large

re-entrant view-ports providing proximity to the sample, therefore, granting the op-

portunity for a high-resolution imaging system, see section 3.2.

Two sets of coils are mounted around the science chamber, the MOT coils, and

the Feshbach coils, see figure 3.7a. The MOT coils consist of two small sets of coils of

6 x 4 windings connected in anti-Helmholtz configuration and produce a quadrupole

magnetic field whose gradient around the chamber’s center can be adjusted from 0

to 45.3 G/cm [33]. The Feshbach coils consist of two sets of coils of 12 x 6 windings

connected in quasi-Helmholtz configuration and produces at the center an essentially

constant vertical magnetic field varying from 0 up to 1000 G. The deviation from the

Helmholtz configuration was chosen to create a slight curvature in the magnetic field

at the center of the chamber. This curvature will let us confine the ultracold atoms

into a conservative hybrid optical-magnetic trap, as discussed in section 3.3.

(a) (b)

Figure 3.7: a) Cross-section sketch of the science chamber. b) Principal optical
beams across the science chamber view from above.

Figure 3.7b sketches the principal optical beams arrangement around the science

chamber in the horizontal direction: the two MOT beams, an imaging beam, and the

ODT. We omitted the vertical direction beams for clarity reasons but shown in figure

3.11c.
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3.2. Imaging setup

In this section, we will outline the experimental setup implemented for acquiring

images of the atomic clouds. We start by describing the imaging AOM setup neces-

sary to compensate for the Zeeman shift of the atomic resonant frequency for different

magnetic fields ranging from 0 to 1000 G. Then, we describe the two different imaging

setups we use in the experiment. First, we describe the imaging setup along the hori-

zontal axis of the science chamber. This imaging system was employed to analyze the

different cooling stages from the MOT and optical molasses using low magnification

while following the evaporation process using a magnified setup. Finally, we describe

the high-resolution and high magnification setup along the vertical axis.

3.2.1. Imaging AOM setup

Figure 3.8: Frequency shift of the transitions |1〉 , |2〉 and |3〉 to the excited state in
mJ ′ = −3/2 of the state 22P3/2.

The atomic resonance frequency of a given transition, in this case, the D2 tran-

sition, depends on the external magnetic field due to Zeeman induced shifts in both

the ground state and the excited state. In particular, during all the experimental

sequences, we’ll work with different hyperfine ground states: |1〉, |2〉 and |3〉, see fig-

ure 3.2b and c, but only one excited state for the imaging process: the mJ ′ = −3/2
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branch of the 22P3/2 (The energy difference between the excited states is small, a few

MHz, compared to the transition shift of the whole branch, 102 − 103 MHz).

To drive the imaging transition at a magnetic field, we need to determine the

frequency shift of the transition. This is achieved by taking the difference between

the ground and excited Zeeman shifts as:

∆g(B) = νgB − ν
g
0 ,

∆e(B) = νeB − νe0,

∆eff (B) = ∆e(B)−∆g(B),

(3.1)

where νgB (νeB) describes the energy of the ground (excited) state at a given magnetic

field B, see section 2.3, and ∆eff (B) is the effective frequency shift of the D2 transition

shown in figure 3.8 for all three ground states. These values are large compared to

the operating frequencies of a single AOM. For this reason, we need to distribute the

whole range of frequencies shifts into several sections controlled by different AOM

configurations. Such AOM setup is sketched in figure 3.9.

Figure 3.9: Simplified scheme of the imaging AOM setup.

The AOM setup is split into three sections allowing imaging in five different mag-

netic field intervals:

The first imaging interval corresponds to zero external magnetic field (or low

intensity fields up to 50 G): this imaging interval uses one 200 MHz AOM
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in double-pass configuration to compensate for the Zeeman slower light shift,

creating an effective zero frequency shift. Orange path in figure 3.9

The second interval corresponds to magnetic fields ranging from 200 up to 400

G is reached without changing the light frequency arriving at the imaging setup,

already shifted −400± 20 MHz. Yellow path in figure 3.9.

The third interval corresponds to values around 520 G, which corresponds to the

Feshbach resonance zero-crossing. To image in that range, we need to increase

the frequency shift using a 200 MHz AOM in double-pass configuration, creating

an effective frequency shift of −800± 50 MHz. Blue path in figure 3.9.

The fourth interval corresponds to magnetic field from 650 to 890 G, correspond-

ing to the BEC-BCS crossover. To image in this region, we need to increase

the frequency shift using a single 350 MHz AOM in double-pass configuration,

creating an effective frequency shift of −1100 ± 50 MHz. Green path in figure

3.9.

Finally, for higher magnetic fields around 1000 G, we need to combine both the

200 MHz AOM and the 350 MHz AOM already mentioned: both in double-pass

configuration to increase the frequency shift of −1500 ± 100 MHz. Combining

the green and blue paths from figure 3.9.

The AOM setup allows us to select the imaging interval by changing the orienta-

tion of the λ/2 wave plates along the optical path, see figure 3.9. In this way, we can

direct the imaging beam to the corresponding AOMs and optical fibers to generate

the desired frequency shift. This setup allows us to probe the atoms in presence of

magnetic fields ranging from 200 G to 1000 G. and near the vicinity of zero external

magnetic field.

To drive the imaging transition in the presence of a constant external magnetic

field, we need to match both the transition frequency and the light’s polarization.

Along the vertical direction, the light must have σ− polarization to drive the imaging

transition. While along the horizontal axis, the light must have linear polarization

orthogonal to the magnetic field. The only inconvenience for imaging along the hor-

izontal direction is that the atom-photon cross-section is half its value along the

vertical axis, reducing the atomic signal, see section 4.2.
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3.2.2. Horizontal imaging setup

To image along the horizontal axis, we implemented a two telescope system with

magnifications ≈ 0.37 and ≈ 2.11, see figure 3.10. Both telescopes use the same first

lens, with focal length f1 = 200mm, located at a focal distance from the center of

the science chamber. Then, to select among the two imaging systems, we place a

flippling mirror to change the optical path, either passing through the second lens of

the telescope of focal lengths f2 = 75mm or f3 = 400mm. Finally, the probe beam

arrives at the CCD camera, model Manta from Allied Vision Technologies.

Figure 3.10: Simplified scheme of the horizontal imaging setup around the science
chamber.

The probe’s light frequency originates from the imaging AOM setup, and its value

depends on the magnetic field region we are interested in. The imaging light’s polar-

ization is fixed to be orthogonal to the magnetic field. Along this imaging axis, the

scattering cross-section of the atoms is reduced by a factor of two because only half

of the light can drive the transition, see section4.2. Linear polarization orthogonal to

the magnetic field can be expressed as a linear combination of σ− and σ+ polariza-

tion in the atoms frame of reference. Only the σ− component drives the transition

to the mJ = −3/2 excited state, while the σ+ component is so far detuned from the

mJ = 1/2 excited state that does not interact with the atomic cloud. Although the

optical density is reduced, this imaging setup is crucial since it allows us to follow the

different stages of the cooling process from the ODT transfer to the formation of a

degenerate gas, see section 3.3.
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3.2.3. Vertical high-resolution imaging setup

The high resolution and high magnification vertical imaging setup is different from

the horizontal imaging setup for multiple reasons, the main reason being its proximity

to the atomic sample. The main aspheric lens4 of the microscope objective has an

effective focal length of 32mm, in contrast to the horizontal setup where the first

lens is located 200mm from the sample. The proximity to the sample lets us have

a high numerical aperture (NA), which is key to access higher resolutions. Another

difference is the depth of field (DOF) of the imaging setup. A shorter focal length

with higher NA implies a shorter DOF, DOF ≈ λ
√

1−NA2

NA2 [36]. Hence we require

higher control during the alignment process of this imaging setup.

Design and mounting of the objective

The design of the objective is inspired by the one at LENS [37]. This design con-

siders the experimental requirements concerning the different laser beams necessary

for cooling, imaging, and controlling the atomic sample along the vertical axis: we

need two MOT light beams, an imaging beam, and the possibility to add a green

laser beam to tailor repulsive optical potentials.

(a) (b) (c)

Figure 3.11: a) Photography of the mounted objective. b) Cross-section sketch of
the science chamber and the objective. c) Simplified scheme of the vertical imaging

setup.

4Model AL4532-A of Thorlabs.
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In Figures 3.11b and 3.11c, we depict the objective’s placement as well as a sketch

of the laser beams involved along the vertical direction. Before arriving at the science

chamber, the MOT z and imaging beams are mixed into a polarizing beam splitter

and sent through the bottom vertical re-entrant window. After passing the chamber,

both beams are separated using a combination of λ/4 wave plate and a wire-grid

polarizer (WGP). This combination allows us to retro-reflect the MOT beam while

transmitting the imaging beam since they have orthogonal polarization. Nonetheless,

both beams pass through the aspheric lens and nearly focused on the λ/4 wave plate

and WGP. We cannot place the optics exactly at the effective focal length of the

aspheric lens because of the damage threshold of the WGP. This misalignment causes

the retro-reflected MOT z beam to be slightly diverging. However, this does not

significantly affect the MOT loading stage.

To retro-reflect the MOT beam, while transmitting the imaging beam, we need

to fix the orientation of the WGP with respect to the λ/4 wave plate. To accomplish

this, we minimize the transmission of the MOT z beam through the optical setup.

Once at the lowest intensity, we fix both elements using retaining rings located inside

the optical tube, see the bottom tube in figure 3.11a. To check the setup’s efficiency,

we verify that the imaging beam passes through with almost no power reduction.

This section is screwed into an extension tube shown in figure 3.11a. To precisely

position the aspheric lens, the optical tube is mounted into a five-axis translational

stage: XYZ translation, tilt along XZ and YZ planes, as shown in figure 3.11a.

Magnification calibration

To complete the vertical telescope, we use the second lens of focal length f = 250

mm located outside of the optical tube holding the aspheric lens. We added a second

1 : 1 telescope to extend the imaging setup, as shown in figure 3.12a. This extension

lets us use the Andor Fast Kinetic Series acquisition mode, as we will discuss later.

Additionally, this setup allows us to implement the non-destructive imaging technique

we are interested in: phase-contrast imaging, see section 4.4.

The sequence of lenses focal lengths are f1 = 32 mm, f2 = 250 mm, forming the

first telescope, and f3 = 150 mm and f4 = 150 mm forming the second one, as shown

in figure 3.12a. With these sequence we estimate the final theoretical magnification

of the optical system to be Mteo =
(

250
32

) (
150
150

)
≈ 7.8. However, it is preferable to

measure the truth magnification of the imaging system.
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(a)

(b)

Figure 3.12: a) Simplified scheme of the vertical imaging setup around the science
chamber. b) Sketch of the magnification measurement along the vertical imaging

setup.

(a) (b)

Figure 3.13: a) ODT beam and b) atom’s center of mass positions as a function of
the RF-frequency input voltage of the AOM. The ratio between the measured

displacements determines the magnification of the imaging setup: M ≈ 8.12± 0.01.
The errorbars are smaller than the data symbol.
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To measure the magnification of the imaging setup, we use the fact that we can

control the cloud’s position by displacing the trapping potential by a known amount.

In our case, the cloud’s location is at the ODT focus, section 1. We can change the

ODT focus using the AOM in the ODT setup, section 3.1.2, through the RF-frequency

input voltage of the AOM.

To precisely determine the displacement of the cloud’s position, we calibrated

the displacement of the ODT beam focus as a function of the RF-frequency. Using

a removable mirror placed in front of the last lens of the ODT setup, we deflected

and focused the beam into a CCD camera, figure 3.12b. Then, we recorded the

ODT’s focus transverse position as a function of the RF-frequency input voltage of

the AOM, figure 3.13a. Using a linear fit to the data, we measured displacement to

be 139.7± 0.8µm/VRF .

Later, we repeated the measurement removing the mirror and imaging the atom’s

position. We measured the cloud’s center of mass displacement as a function of the

RF-frequency input voltage of the AOM, as shown in figure 3.13b. Using a linear

fit to the data, we measured the displacement to be 1134 ± 8µm/VRF . Ultimately,

the magnification factor of our imaging system is M = 1134±8
139.7±0.8

≈ 8.12 ± 0.01. This

result is consistent with the theoretical value Mteo ≈ 7.8. The difference between

both values comes from the lenses separation, not being exactly f1 + f2.

Andor and Fast Kinetic Series

The principal imaging technique we are going to use is absorption imaging, section

4.2. For this type of imaging, it is crucial to have a short time between the multiple

acquired images. These image are: an image of probe beam after interacting with the

atoms, an image of the beam itself, lastly, an image of the background noise level.

To see further details go to section section 4.2. The delay time between acquisitions

must be short related to the time scale of power fluctuations in the probe’s beam

and of any form of mechanical vibration of the experimental setup. It is crucial to

consider this to avoid the formation of fringe-like patterns during the optical density

calculation, section 4.3.2. These fringe-like patterns arise from small position shift or

intensity variations of objects in the first and second images. However, we can reduce

the fringes effect by applying a fringe removal algorithm as discussed in section 4.3.2.

In practice, the most severe limitation in the time delay is the repetition rate of

the CCD camera. For example, along the horizontal setup, the Manta CCD takes
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Figure 3.14: Comparison between the FKS acquisition mode (top) and the usual
acquisition mode (bottom). The FKS mode uses part of the sensor as storage while

the rest is used to the actual acquisition. After the first acquisition, the sensor
pixels are shifted vertically to the storage area leaving the sensing area exposed for
the next acquisition. Once the full sensor is used, the ”slow” readout process begins
reading one row at a time. For the usual acquisition mode the readout process must
be repeated for each image, making the time delay between images longer than with

the FKS mode.

around 150 ms to read a full 1388× 1038 pixel image. In contrast, along the vertical

axis we use an Andor EMCCD camera, model Andor iXon Ultra 888. To read a full

1024× 1024 pixel image of the Andor takes around 50 ms. This time is too long for

the experimental requirements since frequencies above 10 Hz may induce fringe-like

patterns in the optical density. However, the Andor camera provides a simple solution

to this problem using a Frame Transfer mode called Fast Kinetic Series (FSK) [38].

This acquisition mode allows us to decrease the time delay between images at the
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expense of the final image pixel height.

Figure 3.14, shows the FKS acquisition mode working principle. This technique

uses only a small section of the EMCCD sensor for the actual acquisition while using

the remaining area as storage. After exposing the acquisition area, the EMCCD shift

the image to the storage area, leaving the acquisition area ready to be exposed again.

The process repeats until the entire sensor is exposed, and finally, the last reading

process transfers the data to the computer. The method’s advantage is that shifting a

row of pixels vertically is very fast, a few µs. In our case, we can fix the vertical readout

speed to 4.3, 2.2, 1.13, or 0.6 µs/vertical pixel, although, we set it to 2.2µs/vertical

pixel to reduce counting errors in the final image; using a height of 255 pixels then the

overall vertical readout time is 561µs. By contrast, both the horizontal shift and the

readout time are the slowest steps of the readout process, leading the 50ms repetition

cycle. This technique reduces the time delay between images by at least a factor

of 100. Figure 3.15 sketches the absorption imaging procedure employing the FKS

acquisition mode. The first image acquired corresponds to the atom’s absorption with

the probe beam, the second being only the probe beam, and finally, the last one is

the background noise level.

Figure 3.15: Using the FKS mode applied to absorption imaging: the first image
corresponds to the atoms absorption signal with the probe beam, the second being

only the probe beam, and finally, the last section is the background noise level.

The downside to this technique is that we need to cover the storage area of the
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CCD physically because the full CCD sensor is still active and could accumulate

undesired counts. To solve this problem, we placed a 3 mm slit in the atom’s focal

plane, see figure 3.12a. In principle, we could position the slit right in front of the

CCD sensor. However, diffraction effects from the slit may introduce distortion effects

in the acquired image. Placing the slit far from the CCD sensor reduces these effects

significantly.

3.2.4. Imaging resolution

A crude estimation of our imaging system’s resolution can be performed using the

Rayleigh resolution criterion. This limit considers the diffraction limit of the aspheric

lens, which collects the imaging beam after the vacuum chamber, see figure 3.11b.

The minimum resolvable separation is the radius of the Airy disc pattern given by

[36]:

δ =
0.61λ

NA
, (3.2)

where λ is the wavelength of the imaging light and NA the numerical aperture of the

imaging setup. The lens we employ is a plano-convex lens with a NA of ≈ 0.61. Then

the theoretical resolution would be δ ≈ 670nm. In practice, one should consider

various defects arising from the imaging beam’s finite size, and more significantly,

misalignment and optical aberrations. In comparison, with the objective at LENS,

they were able to measure the resolution for a similar objective setup and estimated

their resolution to be δ ≈ 1.5µm [37]. We estimate to have a resolution comparable

to the LENS experiment of δ ≈ 2µm.

3.3. Cooling to degeneracy

In this section, we will outline the experimental sequence followed for the pro-

duction of a degenerate quantum gas of 6Li. The techniques involved in the cooling

process start with the slowdown of an atomic beam in the Zeeman Slower, see [17,

33]. The next stage consists of trapping the atoms in a magneto-optical trap. Next,

to reduce the cloud’s temperature, close to the Doppler limit, we apply the standard

optical molasses. To further cool the cloud, we use a gray molasses stage to achieve

sub-Doppler temperatures. This step transfers most of the atoms into the F = 1/2
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state. Later, we confine them into a conservative potential consisting of a single-

beam ODT. There, we perform runaway evaporative cooling to reach the quantum

degenerate regime. Finally, by changing the atom’s interaction through the Feshbach

resonance, we can form a molecular Bose-Einstein condensate (mBEC) of tightly

bound atoms, a strongly interacting Fermi gas (UFG), or a Bardeen-Cooper-Schiffer

(BCS) gas of loosely Cooper-pairs-like states [17].

The magneto-optical trap (MOT) is the first stage towards quantum degeneracy.

At this stage, we confine the atoms arriving from the Zeeman slower. The MOT

consists of two main elements [29]: the first one being three retro-reflected intersect-

ing orthogonal pairs of laser beams in σ+-σ− polarization configuration, secondly, a

magnetic field gradient along with the three orthogonal directions, such that at the in-

tersection of the retro-reflected beams there is a zero magnetic field. Generating such

a field is straight forward using a pair of coils in the anti-Helmholtz configuration.

Figure 3.16: Photography of a lithium MOT, viewing via one of the science
chamber’s viewports.

The laser beam configuration is necessary to cool the atoms through the standard

optical cooling techniques, meaning that the atoms are confined in momentum-space

but not in physical space. The magnetic field gradient is required to capture the atoms

spatially, introducing a spatial Zeeman shift dependence. The Zeeman shift produces

an additional detuning, making it more likely to scatter photons further within the

trapping region. The gradient of the number of scattered photons generates a net

attractive force towards the zero magnetic field region. Farther from the trap’s center,

the Zeeman shift causes a reduction of the number of scattered photons, canceling
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the attractive force and delimiting the trapping region.

The interaction between a two-level system and the magneto-optical configuration

just described is modeled using a semi-classical approach [29, 30]. The total force is

expressed as:

~Ftotal =
~~ks0

2

(
16δ0(kv + ∆µbz

~ )/Γ

(1 + s0)2 + 8
Γ2 (1 + s0)

(
δ2

0 − (k + ∆µbz
~ )2

)
+ 16

Γ4

(
δ2

0 + (kv + ∆µbz
~ )2

)2

)
.

(3.3)

Taking the limit close to the center of the trap (|∆µbz~ | � Γ), and for small velocities

(|kv| � Γ), then the total force on the atoms is:

~Ftotal ≈ 4~ks0

(
2δ0/Γ

(1 + s0)2 + 8(1 + s0)(δ0/Γ)2 + 16(δ0/Γ)4

)(
k~v +

∆µb

~
~z

)
. (3.4)

This expression can be simplify as ~Ftot = −α~v − β~z, where β = ∆µb
~k α, and with

α =
~k2s0

2

(
16|δ0|/Γ

(1 + s0)2 + 8(1 + s0)(δ0/Γ)2 + 16(δ0/Γ)4

)
. (3.5)

Usually, the equation (3.5) is written in the low intensity approximation, i.e.

s0 = I/Isat � 1:

α = 4~k2s0

(
2|δ0|/Γ

(1 + (2δ0/Γ)2)2

)
. (3.6)

A more detailed description of this model, including the experimental optimization

of the optical cooling stages described in this section, can be found in [29, 30, 33].

3.3.1. Optical cooling

Briefly, we will describe the optical cooling stages. We perform the MOT using

the D2 cooling and repumper transitions described in section 3.1.2. After the MOT’s

loading, we can capture about N = 5 × 109 atoms at a temperature of T = 7mK

[17]. At this point, the cloud’s temperature is 50 times higher than the Doppler limit.

This limit is the lowest attainable temperature using the optical cooling techniques,

T Li
D = 141µK for lithium.
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For this reason, we perform a second cooling stage. We turn off any magnetic

field present in the experiment, and we reduce the intensity and the detuning of

both cooling and the repumper lights, bringing them closer to resonance. In these

conditions, we reach N = 6 × 108 atoms at a temperature of T = 500µK [17], close

to the Doppler limit, see figure 3.17a.

(a) (b)

Figure 3.17: Number of atoms (red circles) and temperature (black triangles) of a)
the D2 optical molasses as a function of the cooling detuning; and b) the D1 gray

molasses as a function of the relative detuning between cooling and repumper. The
dashed line in a) corresponds to the Doppler limited temperature as a function of

the detuning. Images from [17].

To further decrease the cloud’s temperature, we can no longer use the D2 optical

transition. Instead, we perform a gray molasses scheme using the D1 transition

[39]. This cooling mechanism is modeled by the interaction of a three-level system in

Λ configuration, with two semi-classical electromagnetic (EM) fields, see figure 3.2.

In particular, it combines two different phenomena: Sisyphus cooling and Velocity

Selective Coherent Population Trapping (VSCPT). Briefly, the Hamiltonian of the

Λ configuration with the coherent EM-fields has two eigenstates, conveniently called

bright and dark states, where only the bright state interacts with the light fields [39,

40]. The cooling process occurs when the atoms in the bright state (with higher

potential energy) are transferred to a lower energy dark state, similar to the Sisyphus

cooling mechanism. The cooling cycle repeats due to the non zero probability of

transferring a dark state into a bright one. The key point is that probability depends

on the square of the atom’s momentum. Consequently, there is an accumulation of

slower atoms in the dark state. This cooling mechanism is therefore said to be velocity

selective. This mechanism protects the slowest atoms from light-assisted heating.

To perform the D1 gray molasses, we need to change the light frequency in the
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optical table setup, see section 3.1.2. In this case, we need both cooling and repumper

frequencies to be blue detuned from their respective transitions, see figure 3.2. The

most important parameter in this cooling mechanism is not the overall detuning of

both cooling and repumper frequencies [39], δ1 and δ2, but rather the relative detuning

between the both frequencies δ = δ1 − δ2. In figure 3.17b, we report the so-called

Fano-like profile characteristic of this gray molasses [17, 39].

The minimum attainable temperature using this cooling scheme is 42µK, reached

at the Raman condition (δ = 0). At the Raman condition, the number of atoms

remaining after the cooling process is lower than the maximum achievable number

using this scheme at δ ≈ −0.25Γ. At this relative detuning, the temperature of the

sample is in the order of 60µK. In practice, after the D1 gray molasses, we end up

with 4×108 atoms at a temperature of T ≈ 60µK. After the gray molasses is applied,

we perform an optical pumping stage to transfer the atoms to the state 22S1/2 with

F = 1/2. This stage is crucial to exploit the lithium Feshbach resonances in the

evaporation process.

3.3.2. The optical-magnetic potential

When an electromagnetic field, very far detuned from any electronic transition, in-

teracts with an atom, its electric field induces an electric dipole moment in the atoms.

The induced electric dipole moment is d = αE, where α is the atom’s polarizability.

Therefore, the effective dipole potential is written as [41]:

Udip = −1

2
d · E. (3.7)

After performing a rotating frame of reference approximation in the optical po-

tential’s calculation, we can rewrite Udip as follows:

Udip(r) = − 1

2ε0c
Re [α(ω)] I(r), (3.8)

where I(r) = ε0c
2
|E0|2 is the intensity profile of the electromagnetic field. Consid-

ering the far detuned limit, defining the detuning as ∆ = ω−ω0, where the incoming

field frequency is ω, and the transition frequency is ω0. The dipole potential reads

[41]:
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Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r). (3.9)

The intensity profile of the ODT is the one of a focused gaussian beam:

IODT (x, y, z) =
2P

πwx(z)wy(z)
exp

(
−2

x2

wx(z)2
− 2

y2

wy(z)2

)
, (3.10)

where the 1/e2 waists of the beam are wx(z) = wx0

√
1 +

(
z
zR

)2

, and wy(z) =

wy0

√
1 +

(
z
zR

)2

. The value of the waists at the focus are wx0 , and wy0 . Since the

gaussian beam is focused, the beam’s waits depends on the propagation distance z.

The Rayleigh length is defined as zR = πwx0wy0/λ. Using this convention, the focus

point is located at r = 0.

Near the focus of the gaussian beam the dipole potential is approximated by:

Udip ≈ −U0

[
1−

(
z

zR

)2

− 2

(
x

wx0

)2

− 2

(
y

wy0

)2
]
, (3.11)

where the corresponding harmonic oscillator potential with frequencies are:

ωzODT =

√
2U0

mz2
R

, ωxODT =

√
4U0

mw2
x0

, ωyODT =

√
4U0

mw2
y0

, (3.12)

and the potential depth is:

U0 =
3πc2

2ω3
0

Γ

∆

2P

πwx0wy0

. (3.13)

The ODT provides weak confinement along the beam’s propagation direction while

providing tight confinement in its transverse direction. For this reason, the magnetic

curvature of the quasi-Helmholtz configuration of the Feshbach field, see section 3.1.3,

is necessary. This curvature provides the confinement along the ODT propagation

direction. The magnetic potential is expressed as:

Umag(x, y, z) ≈ 1

2
m
[
ω2
zmagz

2 − ω2
rmag

(
x2 + y2

)]
, (3.14)

where ω2
zmag = µ

m
∂zzBz(0), ω2

rmag = µ
m
∂rrBr(0), and the atom’s magnetic dipole mo-
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ment is µ.

The net optical-magnetic potential can be expressed ad the superposition of both

optical (3.11) and (3.14) potential:

Uopt−mag(x, y, z) =
1

2
m
[
ω2
zz

2 + ω2
xx

2 + ω2
yy

2
]
, (3.15)

where

ωz =
√
ω2
zODT

+ ω2
zmag , ωx =

√
ω2
xODT

− ω2
rmag , ωy =

√
ω2
yODT

− ω2
rmag . (3.16)

Following the optical molasses, without any magnetic field present, the cloud is

expanding freely. For this reason, before the gray molasses ends, we turn on the

ODT’s power to confine the coldest atoms into the conservative potential. At this

stage, the ODT’s power is 180W, and it focuses on a waist of 50µm in both transversal

directions in the center of the cloud, as shown in figure 3.18a.

(a)
(b)

Figure 3.18: a) Image of the ODT transfer stage: we see the expanding cloud after
the gray molasses stage in the back, the sudden increase in density corresponds to

the atoms captured by the ODT. b) Evaporation curve (blue lines), and phase-space
density (black dots) of the cloud as a function of the evaporation time.

At this stage, the confinement along both the axial and radial directions is purely

coming from the ODT. After loading the atoms into the ODT, we ramp the Feshbach

field from 0 up to 832G in 32ms. The magnetic field’s ramp is such to create an

almost 50:50 mixture of states with mF = 1/2 and mF = −1/2 in the state F = 1/2.

This combination of states is required to exploit the Feshbach resonance to perform

efficient runaway evaporation.

To carry out the evaporative cooling, we decrease the ODT power following the
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curve in figure 3.18b. We perform three ramps until reaching degeneracy. The first

two ramps of the evaporation (dotted and dashed lines in figure 3.18b) occur by

decreasing the power output of the IPG laser from 180W up to 10W. After this

point, we control the ODT power adjusting the efficiency of the AOM in the optical

setup in figure 3.5. During this last step, it is crucial to reduce as much as possible

any source of electronic noise that may convert into power noise in the ODT, therefore

a heating mechanism for the atoms. For this reason, we control the AOM’s efficiency

using a PID controller.

To quantify the evaporation efficiency, we calculate the phase space density (PSD)

of the cloud as a function of the evaporation time. When PSD � 1, we can consider

the atomic cloud to be in the classical regime. When the PSD reaches one or higher,

the cloud begins to reach the quantum degenerate regime, see figure 3.18b.

Figure 3.19: Center of mass position along the x, y and z directions after exciting
the dipole mode. The measured frequencies are: ωx = 2π × 185.33 Hz,

ωy = 2π × 223.95 Hz, and ωz = 2π × 10.754 Hz.

At the end of the evaporation, we produce a superfluid containing about N =

5 × 104 atomic pairs at a temperature of T/TF = 0.1 (20 nK). The trap frequencies

are ωr = 2π × 163 Hz, and ωz = 2π × 10.754 Hz, meaning a cigar-shaped geometry

with an aspect ratio of the order of 1:15. To measure the potential’s frequencies,

we excite the cloud inducing a center of mass oscillation, known as the dipole mode.

This excitation consists of displacing the cloud center of mass and let the atoms

evolve. By measuring the position of the cloud as a function of time, we estimate
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the trap frequencies. To amplify the oscillation’s signal, we let the cloud evolve a

variable time, and then we perform a time-of-flight measurement. An example of

those measurements are shown in figure 3.19. More details can be found in [34].

Figure 3.20: Absorption images of quantum degenerate atomic samples (upper
pictures) and their corresponding integrated density profile (lower graphs). Left
panels: Bose-Einstein condensate of molecules at 1/kFa ≈ 2.35. Middle panels:

superfluid gas at unitarity at 1/kFa ≈ 0.01. Right panels: ultracold gas at the BCS
side of the Feshbach resonance at 1/kFa ≈ −0.37. All pictures were taken after 20

ms of time-of-flight.

At the end of the evaporation, we adiabatically ramp the Feshbach field to the de-

sired value to produce a sample in any desired interaction regime across the Feshbach

resonance. We can switch between a Bardeen-Cooper-Schrieffer (BCS) type super-

fluid and a Bose-Einstein condensate (BEC) of tightly bound molecules through the

BEC-BCS crossover [22]. At the crossover, we create a strongly interacting superfluid

known as unitary fermi gas (UFG).

To explore the different superfluid regimes, we syntonize the magnetic field to

690, 832, and 890 G creating an mBEC, a UFG, and a BCS superfluid, respectively.

Figure 3.20 shows the density profile of the cloud after 20ms time-of-flight.
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Chapter 4

Imaging procedure and calibration

In this chapter, we present different types of imaging techniques. We start by

describing the conventional absorption imaging in two distinct regimes: the low and

high-intensity regimes. Lastly, we describe one non-destructive imaging technique

called phase-contrast imaging. The low-intensity absorption imaging is very

convenient due to its simplicity and lack of prior calibration. Nonetheless, this

regime is not suitable for high magnification imaging setups. For this reason, we

implement high-intensity absorption imaging, although, needs to be calibrated. For

non-destructive imaging, we implemented phase-contrast imaging, allowing us to

record multiple times the same atomic sample.

4.1. Semi-classical light-matter interaction

In this section, we briefly describe the light-matter interaction between a two-level

system and monochromatic light.

At the basis of the light-matter interaction, light is scattered off the atoms in cycles

of absorption and spontaneous emission events at a rate described by the light and

atomic properties. Using a semi-classical description of the light-matter interaction

we arrive to the optical Bloch equations (OBE) [42]. The OBE describes both the

coherent dynamics and the dissipative processes due to spontaneous emission. In the

simple case of a two-level system interacting with single frequency light, the time

evolution for the atomic density matrix ρ reads [42]:
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∂ρgg
∂t

= −iΩ
2

(ρeg − ρge) + Γρee,

∂ρee
∂t

= i
Ω

2
(ρeg − ρge)− Γρee,

∂ρge
∂t

= −
(
i∆ +

Γ

2

)
ρge − i

Ω

2
(ρee − ρgg) ,

∂ρeg
∂t

=

(
i∆− Γ

2

)
ρeg + i

Ω

2
(ρee − ρgg) ,

(4.1)

where Ω = −1
~ 〈g|d |e〉E0 is the Rabi frequency, d is the electric dipole moment

operator, E0 the amplitude of the light electric field, ∆ = ω−ω0 is the detuning from

the resonant frequency ω0, and Γ the natural linewidth of the transition between the

ground, |g〉, and excited state, |e〉. The time evolution equations (4.1), arises after

the rotating wave approximation (RWA) has been carried out [42].

To solve (4.1), we’ll consider the case when the light-matter interaction is longer

than the emission rate 1/Γ, meaning the atoms interact with light in a steady-state

regime. This approximation reduces (4.1) to:

ρstgg + ρstee = 1, ρstee = i
Ω

2Γ

(
ρsteg − ρstge

)
,

i
Ω

2

(
ρstee − ρstgg

)
= −

(
i∆ +

Γ

2

)
ρstge,

i
Ω

2

(
ρstee − ρstgg

)
= −

(
i∆− Γ

2

)
ρsteg.

(4.2)

After solving this set of equations, we obtain:

ρstgg =
1 +

(
Ω
Γ

)2
+
(

2∆
Γ

)2

1 + 2
(

Ω
Γ

)2
+
(

2∆
Γ

)2 , ρstee =

(
Ω
Γ

)2

1 + 2
(

Ω
Γ

)2
+
(

2∆
Γ

)2 , (4.3)

ρsteg =
−
(
−i+ 2∆

Γ

)
Ω
Γ

1 + 2
(

Ω
Γ

)2
+
(

2∆
Γ

)2 , ρstge =
−
(
i+ 2∆

Γ

)
Ω
Γ

1 + 2
(

Ω
Γ

)2
+
(

2∆
Γ

)2 . (4.4)

The average excited state population in the steady state regime is defined as the
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light scattering rate:

Rst
ee = Γρstee =

Γ

2

s0

1 + s0 +
(

2∆
Γ

)2 , (4.5)

where we defined the saturation parameter as s0 = 2
(

Ω
Γ

)2
. A more convenient form

to express the saturation parameter is s0 = I/Isat, where I is the intensity of the

light, and Isat = ~ω3
0Γ/12πc2 is the saturation intensity of the transition.

Figure 4.1, shows the numeric integration of the complete set of OBE, equation

(4.3). Firstly, we notice that for times longer than tc ≈ 10Γ−1, the system reaches the

steady-state solution. In the case of lithium, Γ = 2π×5.87MHz, meaning tLic ≈ 0.27µs.

This timescale is shorter than our experimental time-resolution of 1µs, justifying the

use of the steady-state solutions. Additionally, the analytical values obtained in (4.3)

are in agreement with the numerical ones.

Figure 4.1: Numeric integration of (4.1), with Ω = 5Γ and ∆ = −3Γ. The steady
state regime is achieved after tc ≈ 10Γ−1.

In the case of a multilevel atom, the OBE should cover all the possible couplings

depending on the light’s polarization and the atomic structure [7, 43, 44]. The scat-

tering rate should be the sum over all steady-state populations of all the excited

states, R =
∑

e Γeρee.

When the probe’s polarization is perfectly circular, and the driven transition oc-
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curs between the extrema hyperfine sublevels (e.g. |1/2,±1/2〉 to |3/2,±3/2〉), then

the two-level atom description is a good approximation. Nonetheless, when the polar-

ization is not perfectly polarized circularly, the additional hyperfine sublevels will be

populated. For this and other experimental imperfections, it is convenient to define

an effective saturation parameter [7, 43, 44], seff0 = s0/α, where α is a parameter

taking into account such experimental imperfections. For this reason, we’ll consider

the following scattering rate:

Rα =
Γ

2

s0/α

1 + s0/α + (2∆/Γ)2 . (4.6)

The average power absorbed by the two-level atoms over an optical period can be

calculated through the average work done by the electric field per unit time [42]:〈
dW

dt

〉
st

= ~Ωω
Ω/Γ

1 + 2
(

Ω
Γ

)2
+
(

2∆
Γ

)2 . (4.7)

To estimate the average number of photons absorbed per unit of time, we divide

the average power absorbed by the photon’s energy, ~ω:〈
dN

dt

〉
st

=
1

~ω

〈
dW

dt

〉
st

=
Ω2/Γ

1 + 2
(

Ω
Γ

)2
+
(

2∆
Γ

)2 = Γρstee = Rst
ee → Rα. (4.8)

Following the absorption-emission process, an effective energy transfer happens.

The energy increase per unit of time depends on the number of photons scattered

and the atom’s recoil energy when absorbing or emitting a photon:〈
dE

dt

〉
st

= 2Erec

〈
dN

dt

〉
st

= 2ErecR
st
ee → 2ErecRα. (4.9)

where Erec = ~2k2/2m is the recoil energy, with k = ω/c.

During the imaging procedure, we probe the atoms for some time τ . If we want

the imaging procedure to be non-destructive, we need to consider the probe’s effect

on the cloud. For this reason, we propose that the increase of the cloud’s temperature

is simply kB
〈

∆T
∆t

〉
st

=
〈
dE
dt

〉
st

. Therefore:

〈∆T 〉st = 2τTrecR
st
ee → 2τTrecRα, (4.10)
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where, we defined the recoil temperature as Trec = Erec/kB. Figure 4.2 shows the

increase of the cloud’s temperature per unit time as a function of the probe’s detuning.

Figure 4.2: Increase of the cloud’s temperature per unit of time of a two-level
system as a function of the probe’s detuning, with TLirec = 3.53µK, see appendix A.

This simple model will help us determine the best parameters to perform non-

destructive imaging. We may perform imaging using very low intensity and very

far-detuned, but this will result in a low signal-to-noise ratio, as we’ll discuss in

section 4.2.3. We’ll return to this model at the end of the chapter when describing

the phase-contrast non-destructive imaging.

4.2. Absorption imaging technique

In this section, we will describe the absorption imaging technique. In particular,

we discuss the imaging technique calibration process in the high-intensity regime

using two different methods. Additionally, we discuss how we can enhance the image

quality: focusing the imaging setup using the shadowgraphy technique and using a

fringe removal algorithm to reduce the induced noise in the imaging process. Finally,

we discuss the phase-contrast imaging technique, showing its non-destructive nature.
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4.2.1. Optical density calculation

Absorption imaging consists of imaging the shadow produced by an atomic cloud

illuminated by resonant light. The atoms absorb part of the incoming radiation

reducing the transmitted intensity. To model this process, we’ll consider the two-

level system coupled with a uniform monochromatic radiation field of the imaging

light, see section 4.1. Experimentally this is realized using a near collimated gaussian

beam profile with a waist well above the characteristic sizes of the atomic sample. We

model the propagation of light in the atomic medium by a Beer-Lambert law [29]:

dI

dz
(x, y, z) = −n3D(x, y, z)σ(I(x, y))

dI

dz
(x, y, z) = −n3Dσ0Isat

s0(x, y, z)/α

1 + s0(x, y, z)/α + (2∆/Γ)2
,

(4.11)

where σ(I) = σ0IsatRα is the effective cross-section as a function of the intensitity,

and σ0 = 3λ2/2π is the resonant cross-section for a two-level atom. Fortunately,

we can solve equation (4.11) for the optical density defined as: OD = σ0nc, where

nc(x, y) =
∫∞
−∞ n3D(x, y, z)dz is the column density. After solving equation (4.11) we

get:

OD(x, y) = −α

(
1 +

(
2∆

Γ

)2
)

ln

(
Iz=∞(x, y)

Iz=−∞(x, y)

)
+
Iz=−∞(x, y)− Iz=∞(x, y)

Isat
.

(4.12)

In the cold atoms imaging context, Iz=−∞(x, y) = Iprobe, is the probe beam in-

tensity profile without any atomic absorption, and Iz=∞(x, y) = Iatoms, is the probe

beam intensity profile after the interaction with the atoms. Rewriting (4.12) we get:

OD(x, y) = −α

(
1 +

(
2∆

Γ

)2
)

ln

(
Iatoms(x, y)

Iprobe(x, y)

)
+
Iprobe(x, y)− Iatoms(x, y)

Isat
. (4.13)

Experimentally, we record the intensity profiles using a CCD camera. This process

records the intensity profiles as images in a matrix of pixels. The pixel counts are

proportional to the integrated light transmitted from a specific location on the object
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plane over the probing time. After a probing time, τ , the pixel count at position (i, j)

in the matrix image is related to the intensity profile as [8]:

Cij = ηGT

(
lpixel
M

)2 ∫ τ

0

I(xi, yj; t)

~ω
dt ≈ χsat

〈I(xi, yj)〉
Isat

τ, (4.14)

where η is the quantum efficiency of the CCD sensor, G is the Analog-to-Digital

conversion gain, T the transmission coefficient of the imaging setup, lpixel is the pixel

side length, M the imaging system magnification factor, and 〈I(xi, yj)〉 is the time-

averaged intensity. For convenience, we define χsat as the proportionality factor:

χsat = ηGT

(
lpixel
M

)2
Isat
~ω

. (4.15)

The value of χsat can be estimated theoretically using the CCD camera character-

istics. For the Andor camera, we can approximate the quantum efficiency to be η ≈ 1

[38], we set the EMCCD gain to G = 1, we estimate the optical transmission to be

T ≈ 1. Finally, the pixel length is lpixel = 13µm, and the magnification is M ≈ 8.12,

see section 3.2.3. Using this values, we should expect χsat ≈ 219.9µs−1. We’ll try to

estimate this value experimentally in the following sections.

It is important to note that χsat depends on both the imaging system and the

CCD camera. To estimate the optical density, we consider additional noise sources

in the image arising from background light and electronic noise such as dark counts.

To reduce these noises, we acquire an additional image of the background with the

probe beam turned off, denoted as Cbg. Substituting, (4.14) for each of the images in

(4.13), we obtain:

OD(xi, yj) =− α

(
1 +

(
2∆

Γ

)2
)

ln

(
Catoms(xi, yj)− Cbg(xi, yj)

Cprobe(xi, yj)− Cbg(xi, yj)

)
+
Cprobe(xi, yj)− Catoms(xi, yj)

χsatτ
.

(4.16)

4.2.2. Low Intensity approximation

In the limit of low probe intensity, I � Isat, equation (4.11) can be approximated

as:
dI

dz
= − s0/α

1 + (2∆/Γ)2
σ0n3DI. (4.17)
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The optical density then results in:

OD(xi, yj) = −α

(
1 +

(
2∆

Γ

)2
)

ln

(
Catoms(xi, yj)− Cbg(xi, yj)

Cprobe(xi, yj)− Cbg(xi, yj)

)
. (4.18)

This approximation has the advantage that the constant χsat does not appear,

meaning that the measured optical density is independent of the imaging system,

contrary to the high-intensity regime case. In this approximation, α is the only

constant to calibrate. When applying an external bias magnetic field, α depends on

the probe polarization and the imaging direction. When driving the D2 σ− transition

between the states mJ = −1/2 to mJ ′ = −3/2 along the orthogonal direction of

the external magnetic field, it can be shown that α = 2| sin θ|2, where θ is the angle

between the magnetic field, and the probe polarization. The maximum value of α is 2

and happens when the polarization is orthogonal to the magnetic field. To maximize

the optical density signal, the value of θ is set to π/2. Meaning, the probe polarization

along the horizontal axis is orthogonal to the magnetic field.

Figure 4.3: Pictorial view of the optical density calculation. The CCD camera
acquires the three images required to calculate the optical density: Catoms, Cprobe

and Cbg. Finally, to obtain the optical density we apply the relation (4.18). To
make visible the background noise visible we amplified it a factor of 500.
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4.2.3. High intensity regime

Working on a low-intensity regime is not always possible. The higher the imaging

system magnification, the higher the probe intensity required to keep constant the

signal to noise ratio (SNR). For this reason, in the high-intensity regime, we need

to use the full expression of the optical density obtained in (4.16). To achieve the

highest SNR, we’ll consider the probe frequency is on resonance, ∆ = 0. Therefore,

the optical density is:

OD(xi, yj) = −α ln

(
Catoms(xi, yj)− Cbg(xi, yj)

Cprobe(xi, yj)− Cbg(xi, yj)

)
+
Cprobe(xi, yj)− Catoms(xi, yj)

χsatτ
.

(4.19)

There exist several strategies to calibrate both α and χsat. The first one is to

estimate the value of χsat acquiring multiple images realized with an intensity equal

to the saturation intensity at various pulse length. Using this strategy, it is possible to

obtain χsat using (4.14). This method needs to image the full-beam profile to known

with precision the beam waists. Otherwise, this method introduces large errors in

the value of χsat. This method is straightforward along the horizontal axis since we

can change the imaging magnification to characterize first the beam profile using the

low magnification setup, see section 3.2.2. Once the beam waists are measured, we

switch to the magnified imaging system to calibrate the α coefficient using Reinaudi’s

method [7], as discussed in the following section.

Along the vertical axis, we cannot characterize the beam profile using this method

because there is no alternative to the system magnification. Nonetheless, we can

rewrite (4.19) to obtain an effective optical density OD∗ defined as:

OD∗(xi, yj) = − ln

(
Catoms(xi, yj)− Cbg(xi, yj)

Cprobe(xi, yj)− Cbg(xi, yj)

)
+
Cprobe(xi, yj)− Catoms(xi, yj)

χ∗satτ
,

(4.20)

where OD∗ = OD/α is the effective optical density, and χ∗sat = αχsat an effective

calibration constant. Rewriting the optical density in this way enables us to perform

the calibration process. The constant χ∗sat is estimated using two different methods:

Reinaudi’s [7] and Horikoshi’s [8] methods. To calibrate α, we compare for the same

atomic sample the values of OD∗ and OD, along the vertical and horizontal axis,

respectively. Along the horizontal axis, we can probe the atomic cloud in the low-
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intensity regime where, in principle, the effect of the linear term in (4.19) can be

neglected, making easier the calibration along the horizontal axis.

Horizontal axis calibration

To known the probe intensity when acquiring an image, we measure both the

probe real power, and beam waists. To measure the probe power, we monitored the

transmission through one of the mirrors of the imaging setup using a photodiode,

see top section of figure 4.4. Once calibrated the photodiode, we compare the probe

beam intensity with the CCD pixel count.

Figure 4.4: a) Vertical imaging setups, delimited by the continuous line. b)
horizontal imaging setup, delimited by the dashed line. c) Raw image of the probe
beam, form which it is possible to extract the probe waists: wx = 6.690(3)mm and
wy = 7.014(2)mm. d) Amplitude of the gaussian beam profile as a function of the

probe duration and intensity.

The low-magnification imaging setup has a wide field of view able to image the
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complete beam profile, see figure 4.4c. Using a Gaussian function of the form:

Ae−2x2/w2
x−2y2/w2

y to fit the beam profile. The measured beam waists are: wx =

6.690(3)mm and wy = 7.014(2)mm.

Once the beam waists are measured using the low-magnification setup, we switch

to the magnified imaging setup and acquire a series of the images of the probe beam.

Using the same Gaussian function fit, we related the value of the amplitude, A, to

the probe intensity. Using the fact that A = χsats0τ , see equation (4.14), we obtain:

A = χsat
2P

πwxwyIsat
τ. (4.21)

Since we can control the probe duration, we know the beam waists, and we can

measure the probe real power using the photodiode. We plot the values of A against

s0τ to obtain the calibration constant χsat, see figure 4.4d. A linear fit reveals the

value of χsat along the horizontal setup: χHsat ≈ 221(2) counts/µs.

Calibration of the α in the horizontal axis: Reinaudi’s method

This calibration method uses that equation (4.19) can be divided into two com-

ponents. The first one has the property that only involves properties of the atomic

cloud [7]. The second part depends on the imaging light intensity. Following the

suggested method, we define the following functions [7]:

od0(xi, yj) ≡ σ0nc(xi, yj),

f(xi, yj;A) ≡ −A ln

(
Catoms(xi, yj)− Cbg(xi, yj)

Cprobe(xi, yj)− Cbg(xi, yj)

)
+
Cprobe(xi, yj)− Catoms(xi, yj)

χsatτ
.

(4.22)

Using this distinction, equation (4.19) states that od0(xi, yj) = f(xi, yj;α), where

α is such that the density profile remains constant regardless of the imaging light

intensity. In practice, we infer the value of α by minimizing the standard deviation

of the density profiles across all images taken under different probe intensities and

duration.

The calibration process begins by producing an atomic sample with low atom

number fluctuation to maintain od0(x, y) as constant as possible. Then, we measure
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Figure 4.5: Density profiles taken along the horizontal direction at different probe
intensities and durations, darker colors signifying lower intensities. Top left: using
α = 1 and χsat = χHsat = 221 counts/µs, top right: using α = 5 and χHsat = 221

counts/µs, and bottom left: using α = 1 and χHsat =∞ counts/µs. The bottom right
panel shows the ratio of the standard deviation of the density profiles to the peak

optical density. The last panel suggest that the dispersion get lower when increasing
α, implying more data needs to be taken, see text.

the atomic profile for different intensities and duration of the probe pulse. Figure

4.5 shows the integrated density profiles, darker colors signifying lower intensities.

On the top left, we plot the density profiles using no calibration of α, using the

correction term χHsat. It is clear that the measured profile decrease in height with

higher intensities, requiring calibration of the α parameter. This effect is caused by

the saturation of the atomic transition.

To obtain the value of α, we calculate the standard deviation of the density profiles

taken at different intensities and durations, as shown in the bottom right panel of

figure 4.5. The value of α that reduces the density curves dispersion seems to be the

highest tried, α = 5. Nonetheless, this value increases significantly the peak OD of

the profiles (see both top panels of figure 4.5). This behavior indicates that the linear

term in the optical density calculation does not play a significant role. That is made

clear by looking at the bottom left panel of figure 4.5, where we calculated the density
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profiles without the linear term. We would need to take additional data using higher

intensities to make this calibration process. For this reason, we’ll use the theoretical

value of αH = 2, and χHsat =∞ (low-intensity approximation) for the rest of the data

presented.

Calibration of the vertical axis: Reinaudi’s method

Analogously to the calibration process of the absorption cross-section along the

horizontal axis, along the vertical direction, we define the following functions [7]:

od∗0(xi, yj) ≡
σ0

α
nc(xi, yj), (4.23)

f ∗(xi, yj;χ) ≡ − ln

(
Catoms(xi, yj)− Cbg(xi, yj)

Cprobe(xi, yj)− Cbg(xi, yj)

)
+
Cprobe(xi, yj)− Catoms(xi, yj)

χτ
.

(4.24)

In this case, the identity (4.20) reads od∗0(xi, yj) = f ∗(xi, yj;χ
∗
sat). Where χ∗sat

is such that the density profile remains constant regardless of the probe’s intensity.

Without any calibration, i.e. χ =∞, we obtain the density profiles shown in the left

column of figure 4.6 for probe pulses of 1 µs, and 4 µs. In this case, the effect of the

probe’s intensity is clearer. For higher intensities, we obtain a lower optical density

signal.

To obtain the value of χ∗sat, we proceed as previously described. This time will

repeat the analysis separating the profiles by probe duration. Figure 4.7a, shows the

standard deviation of the density profiles as a function of the parameter χ for each

pulse length. We observe a similar behavior of the curves. For low values of χsat, the

density profile variation increases, while for large values of χ, the deviation saturates

to a finite value. This limit corresponds to the low-intensity limit variation, where the

linear term of (4.20) vanishes, left column of figure 4.6. For values of χ around 200,

the deviations of the profiles for τ > 1 have the same minimum value. We estimated

the value to be χVsat ≈ 236(3) counts/µs.

To calibrate the absorption cross-section along the vertical axis, we compare the

peak optical densities for the sample atomic sample along the horizontal and vertical

axis. The mean peak optical density along the horizontal axis is ODH
peak = 180.8±30,

while for the vertical axis is ODV
peak = 174 ± 13. Taking the ratio of both optical
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Figure 4.6: Density profiles obtained along the vertical axis at different probe
intensities and durations. Darker colors, signifying lower intensities. The top and

bottom left column correspond to the non calibrated case χ =∞, for probe
durations of 1 µs, and 4 µs, respectively. The top and bottom right column

correspond to the calibrated case with χ = 236(3) counts/µs.

Figure 4.7: Left panel: standard deviation of the density profiles as a function of the
parameter χ for multiple probe times. Right panel: the minimum deviation value of
the density profiles standard deviation as a function of the pulse time. The dotted
line represent χVsat ≈ 236(3) counts/µs with the grey area representing 5 standard

deviation.

density’s we obtain αV = 1.04(8).
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Calibration of the vertical axis: Horikoshi’s method

The second calibration method rewrites the equation (4.20) as a linear relationship

between the two quantities C1 and C2 defined as follows [8]:

C1(xi, yj) = − ln

(
Catoms(xi, yj)− Cbg(xi, yj)

Cprobe(xi, yj)− Cbg(xi, yj)

)
, (4.25)

C2(xi, yj) =
Cprobe(xi, yj)− Catoms(xi, yj)

τ
, (4.26)

where C1 is the optical density in the low-intensity approximation, and C2 is the

correction term for the high-intensity regime. Rewriting equation (4.20) we get:

Figure 4.8: Picture of the atomic sample, showing the location of the ROI used in
the calibration.

C2(xi, yj) = χ∗satOD
∗(xi, yj)− χ∗satC1(xi, yj). (4.27)

For each image we’ve taken, we consider a region of interest (ROI) in the center of

the cloud, as shown in figure 4.8. The ROI needs to be smaller than the sample radial

size to consider the density as a constant. Then, we calculate C1 and C2 averaging

over the ROI. The unknown value χ∗satOD
∗(xi, yj) = χsatOD(xi, yj) is suppose to be

constant inside the ROI. This fact allows us to perform a linear fit between the values

C1 and C2, and recover the constant χ∗sat, see figure 4.9.

Using a linear fit to the data we get χ∗sat ≈ 238(8) counts/µs. The error of

χ∗sat is higher than the value obtained using Reinaudi’s method because of the large

scattering of the data points. Nevertheless, this result can be improved by combining

the analysis of a more dense sample, such as a fully condensed cloud, with a less

dense thermal sample to cover a wider range of C1 and C2 values, by considering the

vertical shift in the optical density.
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Figure 4.9: Linear fit of C1 vs C2 which gives χ∗sat = 238(8) counts/µs. The 5σ
confidence interval is indicated by the shaded region.

Both calibration methods are consistent with each other. However, Horikoshi’s

calibration method is more susceptible to errors due to the cloud’s size. Figure 4.8

illustrates this problem. The height of the region of interest is comparable with the

cloud size, which is no the case along the horizontal direction, causing high dispersion

in the data (figure 4.9). This effect introduces higher errors in the determination of

the chi parameter. For this reason, we’ll keep the calibration parameter obtained by

Reinaudi’s method. The error from both calibrations is limited mainly to the stability

of the experimental setup.

Appropriate imaging conditions: pulse time, intensity, and signal to noise

ratio

To have suitable imaging conditions, we need to consider two parameters: the

imaging pulse duration τ and the probe’s intensity s0. Both parameters are needed

to be tuned to maximize the signal to noise ratio (SNR) of the optical density. The

imaging pulse duration is closely related to the SNR, as can be seen qualitatively in

figure 4.6, where the profiles with τ = 1µs are noisier than ones with τ = 4µs.

To quantify which are the best parameters, we evaluate the SNR as a function of

the pulse’s duration and intensity. To calculate the SNR, we employ the following

definition:

SNR =
〈OD∗〉
σOD

, (4.28)
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Figure 4.10: Sample image showing the ROI selection: dashed region to measure
〈OD∗〉, region between the continuous and dashed rectangles to measure the

background noise level.

where 〈OD∗〉 is the mean value of the optical density in a region wherever the atomic

cloud is located (dashed lines in figure 4.10), and σOD is the standard deviation of

the background level (the region between the dashed and continuous lines in figure

4.10).

Figure 4.11: Top: peak optical density and bottom: SNR for the low-intensity
approximation and the calibrated optical density. As expected for the corrected

optical density, the peak OD remains constant for a large range of intensities and
pulse length as opposed to the low-intensity approximation. For the SNR, we don’t

see any significant change between both cases.

Figure 4.11 shows a comparison between the SNR of the uncompensated and

compensated optical densities. As expected for the corrected optical density, the peak
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OD remains constant for a large range of intensities and pulse length as opposed to

the low-intensity approximation. For the SNR, we don’t see any significant change

between both cases. However, for each probe duration, there is a critical value of

intensity for which the SNR is maximum.

In figure 4.12a we plot the SNR/
√
τ as a function of s0τ . For each pulse length,

we offset the horizontal axis to match the maximum value of the SNR/
√
τ . Figure

4.12a, shows that the SNR/
√
τ follows the same behavior around the optimum value

of intensity Iopt.

To analyze in more detail the optimum value of intensity, we draw the appropriate

imaging condition region [8]. To measure the optical density using (4.19) properly,

we must make sure that the assumptions made remain unchanged during the probe

pulse duration. These conditions being a constant resonant condition and a constant

density. Additionally, the SNR must be at least greater than unity to be able to

detect the sample. We can model these conditions using the following inequalities [8]:

τ <
mλ2

2πh

(1 + s0)3/2

s0

, (4.29)

τ < 3

(
mλ

2h
Lpix

√
1 + s0

Γs0

)2/3

, (4.30)

1 < SNR(τ, s0, OD). (4.31)

(a) (b)

Figure 4.12: a) SNR/
√
τ as a function of s0τ for multiple probe pulse duration. b)

Appropriate imaging conditions for 6Li. Figure inspired from [8].

Condition (4.29) comes from the resonance condition: there is a Doppler shift
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caused by the recoil velocity of atoms after absorbing a photon. Since the recoil

velocity, vrec = ~k/m, depends on the atom mass, light atoms are more responsive to

the Doppler effect caused by photon recoils, requiring lower pulse duration. Condition

(4.30) comes from a random walk condition. This condition ensures that atoms stay

within the same pixel area, implying constant density, during the probe pulse. Finally,

condition (4.31) is required to have a signal above the noise level. An extra condition

may arise when considering the full atomic structure, and potential optical pumping

effects. In [45] they exploit the optical pumping effect to produce high signal to noise

absorption imaging. For more details on how to calculate the SNR as a function of the

intensity, s0, the pulse duration τ , and the optical density, see [8]. Figure 4.12b shows

these conditions. The Doppler condition, or resonance condition, is more restrictive

than the random walk condition since the latter only limits for long probe pulses,

τ > 6, or very high intensity, s0 > 9. The SNR condition is very versatile, requiring

a probe pulse of at least 2µs at almost all intensities.

Moreover, in figure 4.12b, we show as red dots the optimum experimental value

of intensity Iopt as a function of the pulse duration. The optimum intensity follows a

simple relation with the probe duration, namely Iopt/Isat = 5.65(3)τ−1.86(4), red dash-

dot curve. The relation suggests that for short probing times, we need to increase

the probe’s intensity to have the same SNR/
√
τ , and vice versa. The SNR formula

proposed by Horikoshi [8] does not recreate the obtained optimum intensity values

for which the maximum SNR. This model has almost the same optimum value of

intensity, s0 ≈ 1.5. Therefore, an adjustment to the model is required.

Our experimental data indicate that our best imaging conditions to acquire an

absorption image is using a pulse length of τ = 4µs, with an intensity of I/Isat ≈ 0.5.

4.3. Image quality enhancement

4.3.1. Focusing using shadowgraphy

To understand the defects introduced by a non-focused imaging setup, we’ll try

to model the atomic signal behavior after propagating in a defocused imaging setup

[46]. After passing through the atoms, the probe beam will be attenuated and phase-
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shifted. The resultant electric field is:

Eatoms(x) = E0t(x)eiφ(x), (4.32)

where the probe beam intensity before passing through the atoms is I0(x) = cε0
2
|E0|2,

t(x) is the transmittance function, and the phase shift is φ(x). Theses functions are

derived in section 4.4, and are given by:

t(x) = exp

(
−1

2

OD(x)

1 + (2∆/Γ)2

)
(4.33)

φ(x) = −OD(x)

2

2∆/Γ

1 + (2∆/Γ)2
(4.34)

Now, let’s assume the imaging setup is not focused, meaning the CCD image plane

is not located where the atoms are but is located at a distance D from the atoms.

Figure 4.13 sketches this situation. Therefore, the intensity profile measured by the

CCD must depend on this difference. To calculate the probe’s electric field through

the defocused setup, we propagate in free space the probe’s field according to the

Fresnel propagator defined as [36]:

PD(x) =
1

iλD
exp

(
i
π

λD
|x|2
)
, (4.35)

Finally, we record the resultant intensity pattern at position D in the CCD sensor

after a magnification factor. We can express the intensity pattern as the convolution

of Eatoms(x) and the Fresnel propagator:

Figure 4.13: Scheme of the shadowgraphy focusing technique. The atoms are located
at a distance D from the image plane of the CCD. The first lens of the imaging
setup is able to move along the probe’s direction to minimize the distance D.
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ID(x) =
cε0
2
|E(x) ~ PD(x)|2, (4.36)

where the symbol ~ denotes the convolution operator. This propagation becomes sim-

pler when considered in Fourier space. Using the convention g̃(f) =
∫
g(x)e−2πix·fdx,

the intensity in Fourier space is:

ĨD(f) =
cε0
2

∫
E

(
x− λD

2
f

)
E∗
(

x +
λD

2
f

)
e−2πix·fdx. (4.37)

Considering small values of D, the resultant field can be approximated using a

Taylor expansion as:

E

(
x± λD

2
f

)
≈ E (x)± λD

2
f · ∇E (x) . (4.38)

Using this approximation in (4.36), and taking it’s inverse Fourier transform to

obtain the intensity field at the CCD position:

ID(x) =
cε0
2
|E|2 (x)− cε0

2

λD

2π
∇ ·
[
|E|2 (x)∇φ(x)

]
, (4.39)

hence,

ID(x) = I0(x)t2(x)− λD

2π

[
I0(x)t2(x)∇2φ(x)−∇(I0(x)t2(x)) · ∇φ(x)

]
. (4.40)

This expression takes into account the absorption effects of the cloud. However,

we can ignore these effects performing imaging far from resonance. In this case, the

signal is proportional to the second derivative of the phase, hence the column density

[46]:

ID(x) = I0(x)

(
1− λD

2π
∇φ(x)

)
. (4.41)

This dispersive imaging technique is called shadowgraph imaging and can be im-

plemented to achieve non-destructive imaging[14]. As shown in equation (4.41), the

signal’s contrast is proportional to the defocused distance D. Consequently, the dis-

persive signal vanishes when the atoms are precisely on focus. Hence, we can use this

imaging technique to focus the optical system. This step is crucial for the experi-

ment. The vertical imaging setup depth of field is around 3µm, meaning we need to

position the objective with high precision, and this method allows us to reach such
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precision levels. More importantly, focusing the imaging setup allows us to achieve

higher resolutions.

Ideally, we would use a far detuned probe beam to acquire the dispersive signal.

Nonetheless, the SNR for large detuning is very low. For this reason, we’ll use a not

so far-detuned probe beam to acquire the dispersive signals. Figures 4.14 a and b

show an example of such images taken with a detuning of ∆ ≈ 3Γ. Figures 4.14 a and

b show different density profiles (2D and 1D respectively) taken at different objective

positions. As shown in figure 4.13 and section 3.2.3, the objective has the ability to

be translated along the probe’s optical path. In this case, we need to use equation

(4.40) instead of (4.41), since there are absorption effects. It is worth notice that for

a flat imaging probe beam, i.e. I0(x) ≈ I0, equation (4.40) reads:

(a) (b)

(c) (d)

Figure 4.14: a) Non-resonant absorption images acquired before, on, and after the
imaging setup focus. b) Integrated radial profiles for various objective positions, see
figure 4.13. c) Resultant images after subtracting the focused image. d) Integrated

radial profiles of the resultant images.

ID(x)/I0 = t2(x)− λD

2π

[
t2(x)∇2φ(x)−∇t2(x) · ∇φ(x)

]
, (4.42)

we can simplify this expression by considering a constant probe detuning and atomic
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density for all images:

ID(x)/I0 = f(x)− βg(x), (4.43)

where, in principle, f(x) and g(x) are the same functions for all images, and β = λD
2π

.

Additionally, we can reduce the problem’s dimensionality by integrating the density

profiles along the axial direction, as shown in figure 4.14c and d.

Formulating the not so far-detuned focusing process as suggested by equation

(4.43), makes it more practical to implement. In figure 4.14, the orange-dashed

profile corresponds to the function f(x), while the rest of the profiles correspond

to non-trivial values of β of equation (4.43). Physically, f(x) represents the optical

density profile, while g(x) represents the distortions effects caused by the defocused

imaging setup.

To find the profile corresponding to β = 0, we proceed by exhaustive trial and

error. We select a candidate profile and subtract it from the rest of the images, see

figure 4.14c and d. Next, we check if the resultant profiles are proportional to each

other for all positions across the image. If that is the case, we found the corresponding

profile with β = 0. If not, we try with another candidate.

4.3.2. Post-processing: Fringe Removal Algorithm

In the standard procedure of absorption imaging, we take three images in every

run of the experiment, figure 4.3. Ideally, both the atomic signal and the probe

have the same beam distribution, except where the sample is, including the beam

profile, the defects on the beam profile, and the interference fringes from optical

elements. However, mechanical vibrations and frequency changes in the probe light

can cause additional interference fringes in the optical density calculation. Moreover,

the interference fringes in the imaging beam may move a little and change their phase

[47–50].

We can take advantage of this effect to improve the SNR of the image in the fol-

lowing fashion. First, we need to generate multiple pairs of absorption and reference

images with the same experimental conditions. If a pair of images produces interfer-

ence fringes in the optical density, then it might be possible that choosing a different

reference image from the set may not cause such interference fringes. Effectively,

producing a smooth background, hence increasing the SNR of the image. We can

extend this idea to create an artificial reference image that almost exactly matches
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the absorption image background.

Figure 4.15: Flow diagram of the fringe removal algorithm. a) We generate a set of
reference images with the same experimental conditions. b) From the atomic signal,

we create the mask where the atoms are. c) We mask the sample region, leaving
only the background for the rest of the procedure. d) We create the linear

combination projecting the background to the list of reference images.

The idea of the Fringe Removal Algorithm (FRA) is to construct the optimal

reference image, Cprobe
opt , for a given absorption image. To generate it, we use a linear

combination of reference images taken with identical parameters, denoted as Cprobe
k ,

see figure 4.15 a). Therefore,

Cprobe
opt (x) =

∑
k

akC
probe
k (x), (4.44)

where ak is the weight of the k-th reference image. To obtain the value of ak, we

minimize using the least-squares difference between the absorption background signal

and reference images [47]:∑
x∈B

(
Catoms(x)− Cprobe

opt (x)
)

=
∑
x

mx

(
Catoms(x)− Cprobe

opt (x)
)
, (4.45)
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where B is the background region, and mx is a mask determining its position, see

figure 4.15 c).

Figure 4.16: A comparison between Left panels: the original optical density, and its
Fourier Transform, and Right panels: the optical density calculated using the

optimal reference image, and its Fourier Transform.

To obtain the values of ak we proceed variationally, setting partial derivatives with

respect to ak to zero. In this manner, we obtain the set of linear equations that we

must solve [47]: ∑
k

akBk,l =
∑
x

mxC
probe
l (x)Catoms(x), (4.46)

where the matrix B is defined as:

Bk,l =
∑
x

mxC
probe
k (x)Cprobe

l (x). (4.47)
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We can solve (4.46) using linear algebra techniques, involving the calculation of

the inverse matrix of B. In addition to the inversion of B, the matrix’s construction

is the most costly computationally since it depends greatly on the number of refer-

ence images we use and the number of pixels. Other methods like Gram-Schmidt

orthonormalization [50] are used to generate a set of linearly independent pseudo ref-

erence images. This method improves the time to calculate the matrix B. Likewise,

methods more complex like principal component analysis [48] speed up this signifi-

cantly. However, the time to compute B in our case is not a problem since the typical

number of reference images we use is around 100.

A comparison between the standard optical density (and its Fourier Transform)

and the optical density calculated using the optimal reference image is shown in figure

4.16. The difference between these images is dramatic. Almost all high-frequency

fluctuations of the background are removed, see the Fourier Transform, increasing

the SNR of the image.

(a) (b)

Figure 4.17: a) SNR as a function of the number of reference images in the set. b)
Optical density noise distribution before (blue) and after (orange) the FRA

correction.

Figure 4.17a shows the SNR increase as a function of the number of images in

the reference list. To produce this result, we use Nref random images selected from a

sample of 170 images to generate the B matrix. Then, we apply the FRA algorithm

to all 170 images. Next, we compare the SNR of the original optical density to the

SNR of the optical density using the FRA. The error bars in figure 4.17a correspond

to the standard deviation of 10 iterations of this procedure. The SNR improvement

increases logarithmically with the number of images in the list. Therefore, to improve
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the SNR by a factor of 2 on all 170 images, we only need 75 reference images in the

set. Moreover, we estimated the background optical density noise distribution before

and after applying the FRA algorithm with all 170 reference images to construct the

B matrix. As shown in figure 4.17b, the standard deviation of the noise distribution

reduces by a factor of two, according to the increase of the SNR signal.

4.4. Phase contrast imaging

Phase-contrast imaging (PCI) allows us to acquire multiple measurements of the

same sample, in situ, in a non-destructive way [2, 5]. This technique has proven to be

useful for studying the condensate dynamics, such as vortex arrays [51, 52], the time

evolution of a space crystal [53–55]. This imaging method is capable of measuring

a high optical density condensate providing information about the thermodynamic

properties of cloud [6, 56]. Moreover, it is particularly useful for characterizing im-

balanced systems such as strongly interacting imbalanced Fermi gases [57–61].

In absorption imaging, we recorded the cloud’s shadow on the probe beam, from

which we extracted the optical density, hence the column density distribution. The

method’s working principle is the spontaneous scattering of photons by the atoms.

This process causes the atomic sample to heat up significantly. The scattering heating

rate can be modeled by (4.10), 〈∆T 〉st = 2τTrecRα. The probe beam must be far-

detuned from resonance to overcome the heating. However, for nonzero detuning,

the real part of the index of refraction of the atoms becomes nonzero, and the cloud

behaves like a lens. The lensing effect occurs because the cloud induces a spatial phase

shift in the probe beam, making it focus or diverge depending on the detuning’s

sign. Detuning the probe beam further decreases the phase shift φ ∝ 1/∆, with

the advantage that the spontaneous scattering Rα ∝ 1/∆2 vanishes more rapidly.

Additionally, increasing the detuning such that the refraction is small, but the phase

shift remains measurable is the PCI principle. This technique allows us to measure

directly the real part of the index of refraction. PCI can be used to image in a

nondestructive way since the number of scattered photons becomes negligible for

large detuning.
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4.4.1. Imaging the phase

Absorption imaging measures the optical density, meaning it probes the imaginary

part of the atomic cloud complex index of refraction N . In contrast, PCI probes the

real part ofN . Currently, this technique is widely used in phase-contrast microscopes,

developed by Zernike in 1933 [62] who was later awarded with the Nobel Prize for his

invention.

Writing the probe beam electric field as Eprobe(x), after passing a cloud of atoms,

the electric field is:

E(x) = Eprobe(x) + Eatoms(x) = Eprobe(x) + Eprobe(x)
(
eiφatoms(x) − 1

)
, (4.48)

where Eatoms(x) represents the part diffracted by the atoms and Eprobe(x) the part

not diffracted. The image acquired by a CCD camera is the intensity of this electric

field, that is I = cε0
2
|E|2 = I0e

−Im(φatoms) = I0e
−OD. Using this scheme, the real phase

term is lost, making the absorption the only measured quantity. In resemblance with

Zernike’s phase-contrast microscope [62], the accumulated phase is converted into an

intensity profile by phase-shifting the non-diffracted light. The non-diffracted light

can be phase-shifted by placing a transparent object with a different optical path

than where the diffracted beam passes. This object will be called a phase spot, more

clearly seen in figure 4.18. The phase spot consists of a Fused Silica wafer with a

dimple located at the center, fabricated by SILIOS. The dimple has a diameter of

200µm with 368(5)nm depth. Light propagating through the dimple accumulates an

effective phase-shift of π/2 with respect to the light propagating through the rest of

the plate. Hence, the non-diffracted light accumulates a phase θ, changing the electric

field arriving at the CCD camera:

E(x) = Eprobe(x)eiθ + Eprobe(x)
(
eiφatoms(x) − 1

)
. (4.49)

The intensity in this case is:

I(x) = I0(x)
[
2 + t2(x) + 2t(x) cos(θ − φ(x))− 2 cos θ − 2t(x) cosφ(x)

]
. (4.50)

where t(x) and φ(x) are the transmittance and the phase shift functions, defined in

terms of the complex phase φatoms as:
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Figure 4.18: Scheme of the PCI setup. The phase spot is aligned in the focal plane
of the non-diffracted probe beam. Light propagating through the dimple

accumulates an effective phase-shift of π/2 with respect to the light propagating
through the rest of the plate.

t(x) = exp (−Im φatoms(x)) ,

φ(x) = Re φatoms(x).
(4.51)

For our phase spot, the phase-shift between the probe field and the diffracted field

is θ = π/2. Hence the intensity is:

I(x) = I0(x)
[
2 + t2(x) + 2

√
2t(x) sin

(
φ(x)− π

4

)]
. (4.52)

Considering the case when the probe beam is far-detuned, meaning no noticeable

absorption effects (t(x) ≈ 1), and for small phase-shift, the PCI signal is:

I(x) ≈ I0(x)(1 + 2φ(x) + φ2(x)) ≈ I0(x)(1 + φ(x))2. (4.53)

Therefore, we can either approximate the phase-shift to first or second order:

φ(1)(x) ≈ 1

2

(
I(x)

I0(x)
− 1

)
, (4.54)

φ(2)(x) ≈

√
I(x)

I0(x)
− 1. (4.55)

Figure 4.19a shows the comparison between the real phase-shift caused by the
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atoms as a function of the probe detuning (see (4.62)), and both approximations to

the phase-shift from a simulated PCI image.

(a) (b)

Figure 4.19: a) Comparison between (continuous blue) the real phase-shift caused
by a cloud with OD = 1, see (4.62). (dashed orange) Phase calculated with (4.54),
and (dotted green) Phase calculated with (4.55). Inset: Close up in the resonance

region, there is a shift in the zero-shift position of ≈ 0.127Γ marked by the red dot.
b) Same as a) but with OD = 3, in this case the zero-shift position is ≈ 0.42Γ.

As shown in figure 4.19a, for a cloud with an optical density equal to 1, the ap-

proximation to first-order (4.55) reproduce more faithfully the real phase-shift for

negative detunings than the calculated with (4.54). In contrast, for positive detun-

ing, the second-order approximation is closer to the real phase-shift. However, both

approximations are notably far from the truth phase value. This discrepancy arises

from the assumption that no absorption effects are present. Figure 4.19b shows the

same calculation as figure 4.19a but for a cloud with an optical density equal to 3. In

this case, the deviation is much greater near resonance. For large detunings, ∆ > 2.5Γ

(OD = 1) and ∆ > 6Γ(OD = 3), both approximations reproduce the phase value,

since for those regions, there are no absorption effects.

To relate the phase-shift to the atomic density, we require to express the atom’s

polarizability as a function of the probe properties. We consider the low-intensity

limit where the atom’s polarizability is given by [63]:

α =
ε0σ0c

ω

(
i

1 + (2∆/Γ)2
− 2∆/Γ

1 + (2∆/Γ)2

)
. (4.56)

Figure 4.20a shows the real and imaginary parts of α as a function of the detuning

∆. The real part of the polarizability is zero at resonance, where the imaginary part
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has its maximum value. Notice the decay of both functions for large detuning: Re

α ≈ 1/∆, while Im α ≈ 1/∆2.

(a) (b)

Figure 4.20: a) Real and imaginary parts of the polarizability. b) I/I0 signals with
an optical density equal to 1. PCI signal (4.52) (continuous blue), PCI signal

assuming no absorption effects (dashed orange), relation (4.52) using t=1; and the
low-intensity approximation of the absorption signal (4.18) (dotted green). The

curve without absorption effects closely matches the curve with absorption effects
for detunings |∆| > 2.5Γ.

Finally, the complex index of refraction N is given by [30]:

N 2 = 1 +
nα

ε0
, (4.57)

where n is the atomic density. The index of refraction (4.57) is only valid for low

densities. For higher densities, like in a BEC, the atom’s dipole moment is influenced

by the surrounding atom’s dipole moments. To account for this effect, we use the

Lorentz-Lorenz equation [64]. Hence the modification of the refractive index is [65]:

N 2 = 1 +
nα

ε0

1

1− 1
3
nα/ε0

. (4.58)

The complex phase and the column density are related to the complex index of

refraction. This relation is explicit when considering the probe beam passing through

the atomic cloud with an index of refraction N . The probe beam accumulates a

complex phase given by:

φa(x, y) = k

∫
(N (x, y, z)− 1) dz, (4.59)
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where k = 2π/λ. Under normal experimental conditions, the ratio nα/ε0 is very

small, in the order of 10−3. Therefore, we approximate the index of refraction as:

N (x, y, z) ≈ 1 +
n(x, y, z)α

2ε0
= 1 +

σ0nλ

4π

(
i

1 + (2∆/Γ)2
− 2∆/Γ

1 + (2∆/Γ)2

)
. (4.60)

Now, the complex phase induced the probe beam is written as:

φa(x, y) =
kα

2ε0
nc(x, y) =

σ0nc(x, y)

2

(
i

1 + (2∆/Γ)2
− 2∆/Γ

1 + (2∆/Γ)2

)
, (4.61)

where nc(x, y) is the column density. Using the complex phase (4.61), we can calculate

the phase-shift and the transmittance functions (4.51):

t(x) = e
−σ0nc

2
1

1+(2∆/Γ)2 ,

φ(x) = −σ0nc
2

2∆/Γ

1 + (2∆/Γ)2
.

(4.62)

We recall these functions from the previous section.

Figure 4.20b shows the comparison between the PCI signal, the approximation of

the PCI signal where no absorption effects are present, and the low-intensity absorp-

tion imaging signal. As expected, the absorption signal is a narrow peak centered at

resonance. For large detunings, no absorption is noticeable, making the absorption

imaging technique useless in this region. In contrast, we still appreciate the PCI sig-

nal for detunings greater than 5Γ. The assumption of no absorption effects is valid

for large detunings, |∆| > 2.5Γ.

For the quantum gases of 6Li, we usually use a mixture of states |1〉 and |2〉
(and possibly |3〉). For this reason, we consider the mixture’s phase-shift and the

transmittance functions defined as:

t(x) = t|1〉(x)t|2〉(x) = e
−σ0n

|1〉
c

2
1

1+(2∆|1〉/Γ)2 e
−σ0n

|2〉
c

2
1

1+(2∆|2〉/Γ)2 ,

φ(x) = φ|1〉(x) + φ|2〉(x) = −σ0n
|1〉
c

2

2∆|1〉/Γ

1 + (2∆|1〉/Γ)2
− σ0n

|2〉
c

2

2∆|2〉/Γ

1 + (2∆|2〉/Γ)2
,

(4.63)
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(a) (b)

Figure 4.21: a) Real and imaginary parts of the polarizability and b) I/I0 signals for
a balanced mixture of states |1〉 and |2〉 with optical density per state equal to 1.
PCI signal (continuous blue), PCI signal assuming no absorption effects (dashed

orange), and the low-intensity approximation of the absorption signal (dotted
green).

where ~∆|2〉−|1〉 = ~(∆|2〉 − ∆|1〉) is the energy difference between the states |1〉 and

|2〉. For magnetic fields above 100G, well within the Paschen Back regime where

the hyperfine splitting is nearly constant, we can approximate ∆|2〉−|1〉 ≈ 12.89Γ =

2π × 75.66 MHz. Figure 4.21a shows the polarizability of an equal mixture of states

|1〉 and |2〉. The imaginary part of the polarizability, responsible for the absorption

effects, has two clear peaks located at the resonance of either state |1〉 or |2〉. The

real part of the polarizability behaves similarly to the one-state polarizability, except

between both states. For a balanced mixture, the real part of the polarizability

reaches zero when ∆1 = −∆2 = 1
2
∆|2〉−|1〉. For this detuning, the phase signal is lost

completely. The phase-shift induced by each state into the probe beam balance out.

This result is more clear in figure 4.21b, where the PCI signal becomes unity.

Figure 4.21b, shows the same comparison as figure 4.20b. In this case, we show

that the region between both states is well described by the assumption that no ab-

sorption effects are present. If we realize the imaging in this region, we can distinguish

both states by their PCI signal. For instance, state |1〉 will appear brighter than the

background, while state |2〉 will appear darker, as shown in figure 4.22a.

Figure 4.22a shows some examples of PCI images as a function of the imaging

frequency. As expected, close to the resonance of both |1〉 and |2〉 states the signal

is the highest, while the signal where ∆1 = −∆2 = 1
2
∆|2〉−|1〉 is close to zero. To
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(a)

(b)

Figure 4.22: a) Phase-contrast images obtained at different frequencies. The
detuning is shown with respect to state |1〉. From left to right, we see an oscillation

in the signal sign. This effect corresponds to the phase sign. b) Comparison
between absorption and phase-contrast experimental data. The data points
correspond to experimental data, while the continuous and dashed curves

correspond to the expected PCI signal using (4.63), and the expected absorption
signal, for an imbalance mixture of OD|1〉 = 1 and OD|2〉 = 0.8.
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characterize the PCI signal, we realize a gaussian fit and plotted the amplitude re-

sults as a function of the imaging frequency in figure 4.22b. Figure 4.22b, shows the

comparison between the absorption and phase-contrast imaging techniques. For com-

parison, we plotted the curves of figure 4.21b for an imbalance mixture of OD|1〉 = 1

and OD|2〉 = 0.8. The shape of the profiles is broader than the expected lineshapes,

this may be caused by intensity broadening during the imaging process. Although,

we see a qualitative agreement between experiment and theory.

(a) (b)

Figure 4.23: a) Detuning where the net phase-shift becomes zero as a function of
the polarization of the mixture, P = (n1 − n2)/(n2 + n1). b) Examples of the

phase-shift for different mixture polarization’s.

The frequency where the net phase-shift becomes zero can be calculated as a

function of the mixture polarization defined as:

P =
n|1〉 − n|2〉
n|2〉 + n|1〉

, (4.64)

where n|i〉 is the density of state i. Figure 4.23a, shows the crossing frequency as a

function of the mixture polarization. As shown, for polarization above |P | > 0.8 this

method cannot be reliably used, since the crossing point gets close to the states

resonance frequency. A linear fit reveals the crossing detuning is ∆crossing/Γ =

−6.445(2)− 6.577(4)P = −1
2
∆|1〉−|2〉 − 6.577(4)P .

4.4.2. Large phase distortions

The phase-contrast imaging technique allows us to perform non-destructive imag-

ing under some particular conditions, the two most important being the probe’s in-
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tensity and detuning. Large detuning and low-intensity are crucial to prevent heating

during the probe pulse.

(a) (b) (c)

Figure 4.24: PCI large phase distortions. a) Example of the non-linear effects cause
by the non-linear nature of the PCI signal, taken with a detuning ∆ = 2.3Γ. b)

Theoretical PCI signal using a sample with OD = 1. c) Theoretical example of a
severe distortion caused by a high density sample.

Nonetheless, the phase-contrast imaging signal is a non-linear function of the

atomic phase, see equation (4.52). Up to this point, we neglected these non-linear

effects, approximating the induced phase to be small. However, close to resonance or

imaging high optical density samples, we must consider these non-linear effects. In [6],

they make use of these non-linear effects to study the thermodynamic properties of

a BEC. Figures 4.24a and 4.24b show an example of a PCI image close to resonance,

∆ = 2.3Γ, and the corresponding theoretical profile using a sample with OD = 1.

The high density at the trap’s center shift by more that π the probe phase. The

periodicity of the PCI signal makes this region appears brighter than the cloud’s

outer layers. For more dense clouds, the phase shift can be higher than 2π, making

the signal oscillate multiple times, as shown in figure 4.24c.

4.4.3. How non-destructive is this imaging technique?

The simple model we obtained in section 4.1 is necessary to evaluate how destruc-

tive is this imaging technique. The heating rate we obtained was:

〈∆T 〉st = 2τTrecRα = τTrecΓ
s0/α

1 + s0/α + (2∆/Γ)2 . (4.65)

Considering this technique non-destructive would mean that the induced heating
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is small compared to the cloud’s temperature, 〈∆T 〉st /T � 1. Therefore:

〈∆T 〉st
T

=
Trec
T

τΓs0/α

1 + s0/α + (2∆/Γ)2 � 1. (4.66)

(a) (b)

Figure 4.25: a) Appropriate conditions to perform phase-contrast imaging for the
probe length τ and the effective saturation parameter s0/α. b) Appropriate

conditions to perform phase-contrast imaging for the detuning ∆/Γ as a function of
the effective saturation parameter s0/α for a sample with temperature T = 50nK.

The continuous lines corresponds to η = 0.1, and the dashed lines to η = 0.05.

This imposes a condition in the detuning used for imaging. Rearranging the terms

in (4.66), and defining
〈∆T 〉st
T

= η � 1, we get:

∆

Γ
� 1

2

√(
TrecτΓ

ηT
− 1

)
s0/α− 1. (4.67)

A second condition to meet regards the the fact that the CCD camera must be

able to distinguish the probe from background noise. This condition can be stated

as:

Cprobe = χsats0τ = χ∗sat
s0

α
τ > Cbg, (4.68)

where χ∗sat is the measured constant from sections 4.2.3 and 4.2.3 ( χ∗sat ≈ 236(3)

counts/µs). This condition limits the lowest value of s0/α to:

s0/α >
Cbg

χ∗satτ
, (4.69)
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called the detection limit. A third condition to consider regards the SNR, needing

to be greater than unity. Finally, in analogy to the absorption imaging a Doppler

condition must be constraint, see section 4.2.3.

Figure 4.25 shows the appropriate condition to perform phase-contrast imaging.

The first condition to consider is for the effective saturation parameter s0/α. Lower

intensities require longer probing times to obtain the same SNR, as shown in 4.25a.

The detection limit, as expected, is always below the SNR condition. Performing

imaging below the detection limit is not feasible due to its high count noise in the

image.

Figure 4.26: Minimum detuning for performing non-destructive imaging as a
function of the temperature increase on the cloud using the intensity and probe

length from the SNR = 1 limit

To determine the range of values for the probe detuning, we’ll consider the equal-

ity in (4.67). To map the SNR limit, black curve in figure 4.25a, we parametrize the

minimum probe duration as a function of the effective saturation parameter. After

substitution in equation (4.67) we get the curves shown in figure 4.25b, for different

values of η. This curves appear to be independent of the effective saturation pa-

rameter, taking into account the corresponding probing time. The curves shown in

figure 4.25b show the detuning required to perform phase-contrast imaging with an

intensity Isats0/α that produce an increase the temperature of ηT .

Taking advantage of the independence of the detuning as a function of the limit
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SNR = 1. In figure 4.26, we plotted the minimum detuning for imaging as a function

of the temperature increase. For high temperature clouds, we can perform non-

destructive imaging using lower detunings, since we can allow a higher increasing in

temperature. This is not the case for the colder clouds.

Using the current imaging setup along the vertical axis, to perform a high reso-

lution non-destructive phase-contrast imaging we would need to use a probe inten-

sity I = 0.02Isat ≈ 0.05 mW/cm2, a probe duration of τ & 8µs, and a detuning

∆ = 30.46Γ ≈ 2π × 178.8 MHz. Using theses parameters the cloud’s temperature

would increase around 5−10% per image taken. This would imply we can perform at

most 5 images before the cloud’s temperature increases by half the initial temperature.

One way to increase the number of images would be to perform the phase-contrast

imaging along the ODT propagation axis. This particular axis has the advantage of

having the highest column density, therefore a higher phase-contrast signal. However,

imaging along that axis is not yet implemented. The only disadvantage of imaging

along that axis, is that only low magnification and low resolution setups can be

implemented.
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Chapter 5

Conclusions and perspective

5.1. Conclusions

My thesis centered on the experimental implementation and characterization of

both destructive and non-destructive imaging techniques for ultracold quantum gases.

I developed a new optical setup capable of imaging the atoms with high-resolution

(≈ 2µm). A crucial step during the imaging procedure is the characterization of the

atomic signal. I developed the tools necessary for the correct determination of the

cloud properties using the absorption imaging technique. I established a method to

obtain the calibration constants along both imaging axes by linking their respective

atomic signal.

Additionally, I implemented the non-destructive phase-contrast imaging tech-

nique. This technique measures the atomic density by connecting the induced phase

on the probe beam to the cloud’s density. Since we work with a mixture of two

distinct spin components, we can measure the density difference between both states

by selecting the appropriate detuning. The optical system is suitable for performing

multiple high-resolution images of the same atomic sample, allowing studying the

dynamic properties of quantum gases.

Finally, to further increase the quality of the acquired density profiles, I developed

an algorithm capable of removing high-frequency artifacts from the images without

altering the density profile. Hence, increasing the signal-to-noise ratio a factor of two.

The diagnostic tools I developed during this work will enable the Laboratory of

Ultracold Matter at UNAM to explore new and exciting phenomena.
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5.2. Future perspectives

Quantum turbulence One of the main goals of the laboratory is to study fermionic

superfluid turbulence in quantum gases. Only recently, there has been experimental

progress in the understanding of turbulent cascades in weakly interacting bosonic

superfluids [66]. It is not the case for fermionic superfluids, where there are no

prior experimental attempts to study the emergence of such turbulent cascades [67].

Fermionic superfluids offer the opportunity to characterize a wide range of interaction

regimes using the Feshbach resonances. This versatility is not necessarily present in

bosonic superfluids due to its collapse for attractive interactions [1, 2] and three-body

loses for strong interactions [1, 26].

Recent papers have tried to comprehend the transition between different collective

excitation regimes to a turbulent one. One of these proposals is the unfolding of

Faraday-waves-like excitations [68, 69].

Faraday waves In 1831, Faraday studied the emergence of parametric surface

waves that originated from an oscillatory vertical motion [70]. Such parametric sur-

face waves show the non-linear behavior of fluids, where the vertical motion couples

to the horizontal surface generating time-dependent spatial patterns [71]. These pat-

terns appear and disappear at half the driving frequency. This kind of parametric

excitations is an example of growing instability in a non-linear system [71].

Previous experiments confirmed the emergence of Faraday waves-like patterns in

cigar-shaped ultracold bosonic gases [53, 55, 72, 73]. They reveal that this phe-

nomenon can be linked to discrete-time crystals, making the whole system behaves

like a space-time crystal [55, 72]. In particular, this phenomenon allows us to study

pattern formation in quantum gases. The degree of non-linearity in the system deter-

mines the emergent properties of such patterns, such as the spatial and time periodic-

ity, growth rate, and symmetry. For these reasons, it is worth studying the emergence

of Faraday waves across the BEC-BCS crossover. This work allowed us to study such

collective excitations. To follow the dynamics of this type of excitation, we required

to probe the sample multiple times with sufficient resolution to distinguish spatial

patterns. The development of phase-contrast imaging is therefore needed.

To excite the Faraday waves, we drive the radial trapping frequency by modulating
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the ODT intensity sinusoidally:

P (t) = P0(1 + α sin Ωt) =⇒ ωr(t) = ωr0
√

1 + α sin Ωt. (5.1)

The driving of the trapping potential will induce a driving in the density distri-

bution of the cloud. Due to the non-linear behavior of ultracold quantum gases, this

temporal drive will couple to a variety of excitation modes of the gas, for instance

the breading mode, the scissor, and Faraday waves. The result from all the excita-

tion modes is a spatial density modulation along the axial axis of the trapped cloud

know as Faraday waves. These waves have the characteristic behavior that the spatial

density modulation oscillates in time with half the driving frequency. In particular,

driving the system at the breathing mode frequency will produce a resonant coupling

between the breathing mode and the Faraday waves, accelerating the emergence of

the density modulation.

(a) (b)

Figure 5.1: Time evolution of Faraday waves in the BEC-side of the Feshbach
resonance. We present on top the axial density and the corresponding Fourier

Transform for a) the result from the time evolution of the Gross-Pitaevskii equation,
and b) the experimental time evolution.

Figure 5.1 show the emergence of the Faraday waves in the BEC-side of the Fesh-

bach resonance, driving at Ω = ωBreathing ≈ 2ωr. Figure 5.1a results from the numeri-

cal simulation of the Gross-Pitaevskii equation (GPE), while 5.1b is the experimental

realization. The GPE equation is a non-linear Schrödinger equation:

i~
∂ψ

∂t
= − ~2

2M
∇2ψ + V (x, t)ψ + gM |ψ|2ψ, (5.2)
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where ψ represents the molecular pair wavefuntion in the BEC-side, the mass being

M = 2mLi, the time dependent potential V (x, t) = 1
2
M (ω2

zz
2 + ω2

r(t)r
2), and gM =

4π~2aM/M is the interaction constant depending on the molecular scattering length

aM ≈ 0.6as with as the atomic scattering length.

Since the time dependence of the potential is periodic, it is possible to get an in-

sight into the solution to the GPE without solving it. This is possible using Floquet

and linear stability analysis. Using both tools to analyze the GPE with the radial

driving, we arrive at a Mathieu-like equation for the equilibrium solution perturba-

tions. The Mathieu equation is given by:

∂2u(τ)

∂τ 2
+ (a− 2q cos 2τ)u(τ) = 0. (5.3)

This result enables us to predict the wavevector of the spatial modulation as a func-

tion of the driving frequency and the interaction regime, meaning kFW (1/kFas,Ω).

The solution to the Mathieu equation gives a rich stability diagram showing the un-

stable regions in a parameter-space. A useful parameter-space is formed by the axial

wavevector, kz, and the driving amplitude α. The particular interest in this parame-

ter space is that it is accessible experimentally. Preliminary results from our Faraday

waves experiments are shown in figure 5.2a.

(a) (b)

Figure 5.2: a) Experimental stability diagram of Faraday waves on the BEC-side. b)
Faraday waves phase velocity compared to the speed of sound in the quantum gas.

The darker areas in figure 5.2a show the unstable regions obtained experimentally.

These regions are associated with the Mathieu equation solutions in the already men-

tioned parameter-space.

The Faraday waves excitation can be interpreted as the interference of two counter-

propagating phonons with the same wavevector. This interpretation leads to the
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conclusion that the phase velocity of the Faraday waves, Ωn/kFW , can be linked to

the speed of sound in the quantum gas. Particularly on the BEC-side, this relation

is given by: (
1

vFermi

Ωn

kFW

)
≈ 2

c0
s

vFermi
. (5.4)

Figure 5.2b shows preliminary results on the speed of sound measurement using

the Faraday waves in the BEC-side.

Further analysis and experiments must be carried out to uncover the connec-

tion between Faraday waves and quantum turbulence across the whole BEC-BCS

crossover.
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Appendix A

6Li D-lines properties

The properties of the D1 and D2 lines of 6Li are:

Property Symbol Value
Wavelength (vacuum) λ 670.992421 nm
Wavenumber (vacuum) k/2π 14903.298 cm−1

Frequency ν 446.289634 THz
Lifetime τ 27.102 ns
Natural Linewidth Γ 5.8724 MHz
Saturation intensity Isat 7.59 mW/cm
Recoil velocity vrec 9.886554 cm/s
Recoil temperature Trec 3.53565356 µK

Table A.1: Optical properties of the D1 line [28].

Property Symbol Value
Wavelength (vacuum) λ 670.977338 nm
Wavenumber (vacuum) k/2π 14903.633 cm−1

Frequency ν 446.799677 THz
Lifetime τ 27.102 ns
Natural Linewidth Γ 5.8724 MHz
Saturation intensity Isat 2.54 mW/cm
Recoil velocity vrec 9.886776 cm/s
Recoil temperature Trec 3.53581152 µK

Table A.2: Optical properties of the D2 line [28].
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de 6 Li. Bachelor thesis at Facultad de Ciencias, UNAM. 2018.

[34] E. Padilla. “Time-averaged optical potentials for trapping and manipulating

ultracold quantum 6Li gases”. MA thesis. Instituto de F́ısica, UNAM, 2020.

[35] Richard Roy et al. “Rapid cooling to quantum degeneracy in dynamically

shaped atom traps”. In: Physical Review A 93.4 (Apr. 2016). doi: 10.1103/

physreva.93.043403. url: https://doi.org/10.1103/physreva.93.

043403.

[36] Joseph Goodman. Introduction to Fourier Optics. Roberts and Company Pub-

lishers, 2004. isbn: 0974707724. url: https : / / www . xarg . org / ref / a /

0974707724/.

[37] Andrea Morales. “High resolution imaging and production of thin barriers for

ultracold 6 Li Fermi gases”. PhD thesis. Sapienza Universita di Roma, 2013.

https://doi.org/10.1007/978-3-642-21978-8
https://doi.org/10.1007/978-3-642-21978-8
https://doi.org/10.1103/physrevlett.71.3202
https://doi.org/10.1103/physrevlett.71.3202
https://doi.org/10.1103/physrevlett.71.3202
https://doi.org/10.1103/physreva.93.043403
https://doi.org/10.1103/physreva.93.043403
https://doi.org/10.1103/physreva.93.043403
https://doi.org/10.1103/physreva.93.043403
https://www.xarg.org/ref/a/0974707724/
https://www.xarg.org/ref/a/0974707724/


92

[38] User’s guide to: Andor Technology SDK.

[39] A. Burchianti et al. “Efficient all-optical production of Li 6 quantum gases D1

gray-molasses cooling”. In: Physical Review A 90.4 (Oct. 2014). doi: 10.1103/

physreva.90.043408. url: https://doi.org/10.1103/physreva.90.

043408.

[40] Manuel Gerken. “Gray Molasses Cooling of Lithium-6 Towards a Degenerate

Fermi Gas”. MA thesis. University of Heidelberg, 2016.

[41] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. “Optical

Dipole Traps for Neutral Atoms”. In: Advances in Atomic Molecular and Optical

Physics 42 (Jan. 2000), pp. 95–170. doi: 10.1016/S1049-250X(08)60186-X.

arXiv: physics/9902072 [physics.atom-ph].

[42] Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg. Atom-

photon interactions: basic processes and applications. eng. New York: Wiley,

1992. isbn: 9780471625568 9780471293361.

[43] Gael Reinaudi. “Manipulation et refroidissement par évaporation forcée d’ensembles

atomiques ultra-froids pour la production d’un jet intense dans le régime de
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