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COMITÉ TUTOR

Dra. Rosario Paredes Gutiérrez
Instituto de F́ısica, UNAM

Dr. Daniel Sahagún Sanchez
Instituto de F́ısica, UNAM

Ciudad Universitaria, Cd. Mx., 21 de marzo del 2021



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



ii

Hoja de Datos del Jurado

1. Datos del alumno
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Resumen

Este trabajo presenta el diseño e implementación de un sistema óptico que permite
la creación de potenciales ópticos promediados en el tiempo (TAP) para la captura
y manipulación de gases cuánticos 6 Li.

La implementación de la técnica TAP nos permite crear una trampa óptica mold-
eable (ODT). En esta trampa se lleva a cabo la última etapa de enfriamiento, el
enfriamiento evaporativo, que nos permite obtener un gas fermiónico ultrafŕıo (≈ 20
nK). El enfriamiento evaporativo fue optimizado y complementado con TAP, que se
documenta y caracteriza en esta tesis.

Las diferentes geometŕıas para ODT que TAP nos permite crear son casi arbitrarias,
desde un pozo doble hasta una caja de potencial o un potencial armónico. En esta
tesis se desarrolla un algoritmo, con el cual fue posible obtener estas trampas con
geometŕıas arbitrarias.

Una vez seleccionada la geometŕıa, también es posible escalar sus dimensiones. Esto
nos permite controlar el tamaño y el volumen de la trampa. Por ejemplo, usando
geometŕıa armónica, es posible manipular la cintura ODT para pasar de 40.0 (26)
µm a 128.6 (26) µm de manera continua.

Un resultado importante de esta tesis es el diseño y estudio de un experimento
cuyo objetivo es observar la transición de fase BEC disminuyendo el volumen, pero
manteniendo constante la temperatura y el número de átomos. Este experimento,
además de mostrar la utilidad del TAP, proporciona una nueva perspectiva de lo
que se suele hacer en el campo de los átomos ultrafŕıos, donde se disminuye el
volumen en lugar de la temperatura para lograr la condensación de Bose-Einstein.
Este experimento también nos da una primera idea de cómo medir el volumen de
una trampa armónica tridimensional.

Finalmente, se prueba la trampa de geometŕıa de doble pozo en los átomos, lo
que nos permite obtener dos muestras cuánticas cuya separación podemos controlar
finamente, mostrando la versatilidad de TAP. Con esta configuración fue posible
realizar un experimento en el que concluimos definitivamente que tenemos muestras
en régimen cuántico. Esto se logró dejando las dos muestras interaccionar en tiempo
de vuelo y, debido a que éstas se comportan como ondas de materia, se observó un
patrón de interferencia.
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Abstract

This work presents the design and implementation of an optical system that allows
the creation of time-averaged optical potentials (TAP) for the capture and manip-
ulation of 6Li quantum gases.

The implementation of the TAP technique allows us to create a moldable optical
dipole trap (ODT). In this trap the last stage of cooling is carried out, the evap-
orative cooling, which allows us to obtain an ultracold fermionic gas (≈ 20 nK).
Evaporative cooling was optimized and complemented with TAP, which is docu-
mented and characterized in this thesis.

The different geometries for the ODT that TAP allows us to create are almost
arbitrary, from a double well to a box or a harmonic potentials. In this thesis
an algorithm is developed, with which it was possible to obtain these traps with
arbitrary geometries.

Once the geometry is selected, it is also possible to scale its dimensions. This allows
us to control the size and volume of the trap. For example, using harmonic geometry,
it is possible to manipulate the ODT waist to go from 40.0(26) µm to 128.6(26) µm
in a continuous way.

An important result of this thesis is the design and study of an experiment whose
objective is to observe the BEC phase transition decreasing the volume, but keeping
the temperature and the number of atoms constant. This experiment, in addition
to showing the usefulness of TAP, provides a new perspective on what is usually
done in the field of ultracold atoms, where the volume is lowered instead of the
temperature to achieve the Bose-Einstein condensation. This experiment also give
us a first insight of how to measure the volume of a three dimensional harmonic
trap.

Finally, the double-well geometry trap is tested on the atoms, which allows us to
obtain two quantum samples whose separation we can finely controlled, showing the
versatility of TAP. With this configuration it was possible to carry out an experiment
in which we definitively concluded that we have samples in the quantum regime. This
was achieved by allowing the two samples to interact in time-of-flight and, since they
behave like matter waves, an interference pattern was observed.
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Introduction

“Many years later, facing the firing squad, Colonel Aureliano Buend́ıa was to
remember that distant afternoon when his father took him to discover [the great

invention of their time] ...
the chest gave off a glacial exhalation. Inside there was only an enormous,

transparent block with infinite internal needles in which the light of the sunset was
broken up into colored stars. Disconcerted, knowing that the children were waiting

for an immediate explanation, José Arcadio Buend́ıa ventured a murmur:
‘It is the largest diamond in the world.’

‘No,’ the gypsy corrected him, ‘it is ice.”

Gabriel Garćıa Márquez, One Hundred Years of Solitude

Why are physicists interested in cooling atoms? Why do we want to cool atomic
gases to lower and lower temperatures? Well, before we answer these questions we
have to stop and think about how fast atoms are moving at room temperature.
The mean speed of air molecules at standard conditions1 is around 422 meters
per second, which is comparable to the speed of a supersonic jet aircraft flying at
Mach 1.5. Then, if we want to study atoms more carefully, wouldn’t it be better
if they moved slower or even stood (nearly) motionless? Certainly, at lower speeds
one could study atoms in greater detail and determine their properties with much
higher precision. Of course, this is exactly what cold atom physics has allowed us
to do.

A typical application of the precision measurements that have now become a reality
are atomic clocks which, to this date, are the most precise clocks known to humanity.
Put in layman’s terms, a clock is able to measure time by counting something that
ticks, but the ticking mechanism of regular clocks (such as the swing of a pendulum
or the oscillations of a quartz crystal) is not nearly as reproducible as the ticking of
an atom. Therefore, atomic transition frequencies provide the time and frequency
standards which have been adopted worldwide as the definition of the second itself
[1, 2].

Using laser light to slow down the motion of atoms was first proposed by Hänsch
and Schawlow in 1975 [3]. A laser is generally thought of as something that heats

1Using the most likely speed according to vp =
√

2kT
m for diatomic nitrogen N2, the primary

component of air, at room temperature (300 K).
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up matter because they are commonly used for welding and metal cutting. However
this is not always the case, it only proves that there exists an energy transfer process
between atoms and light. If somehow we could reverse the energy transfer process,
then light would be able to remove energy from matter cooling it down. This process
is exactly what occurs with lasers in dilute atomic gases.

When an atom transitions to an excited (unstable) state by absorbing a photon, it
has no other choice but to eventually re-emit it. If the frequency of the absorbed light
is less than the frequency of the emitted light, this frequency difference is equivalent
to energy loss i.e. cooling. That is, irradiating atoms with light of a carefully
controlled frequency can cool them by a small amount at every absorption-emission
process which itself normally occurs many millions of times per second. This allows
us to reach extraordinarily low temperatures by means of simply irradiating matter
with laser light.

After this ideas were put forward, the scientific community became interested in
trapping cooled atoms in containers which we now call atom traps. Naturally, these
are not physically tangible receptacles, they are made up of laser beams and magnetic
fields in which cooled atoms at the millikelvin and microkelvin temperatures can be
held. For the development of laser cooling and trapping methods, W.D. Phillips,
S. Chu and C. Cohen-Tannoudji received the Nobel Prize in 1997 [4, 5, 6]. Among
other things, these techniques helped to improve the precision of atomic clocks.

The pursuit for even lower temperatures didn’t stop there and researchers began
to wonder what would happen if we could cool atoms even further. Well, when we
reach lower temperatures (in the nanokelvin range) with a gas of particles, we arrive
to the quantum regime and the gas becomes degenerate. At this point, statistical
mechanics plays a crucial role, it makes a big difference whether the atoms are
bosons (particles that have integer spin) or fermions (particles that have half odd
integer spin). If they are fermions, they form a quantum degenerate Fermi gas
(DFG), on the other hand, if they are bosons they transition to a state known as a
Bose-Einstein condensate (BEC).

With this in mind, physicists developed all kinds of laser cooling based techniques
trying to create a quantum degenerate gas without success. Eventually, they real-
ized that the key to reach the required temperatures is actually a relatively simple
process known as evaporative cooling, which happens in everyday life. Surprisingly,
evaporative cooling is easier to explain than laser cooling, because it works under
the same principle as blowing into a cup of coffee to cool it down. When one does
this the most energetic water molecules escape from the coffee in the form of vapor,
and those which stay behind have (on average) less energy, in other words, the coffee
has cooled down.

So by selectively removing the hottest particles one effectively cool down the ensem-
ble. And that’s exactly what we do when we apply evaporative cooling on the atoms.
We let the most energetic atoms escape so that the remaining ones cool down and
eventually rethermalize to nanokelvin temperatures, reaching the quantum regime.

Nevertheless in the early 90’s it wasn’t obvious how to combine laser and evaporative
cooling to achieve quantum degeneracy since these two methods work best in very
different regimes. Laser cooling is more efficient at very low atomic densities, because
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at high densities a photon emitted by an atom gets absorbed again by another
atom and, on average, this heats up the gas. On the contrary, evaporative cooling
requires collisions between particles to allow the sample to reach thermal equilibrium
throughout the evaporation process.

Because of this, the initial consensus of the scientific community was that it would
not be possible to use both methods. But, through the use of very clever schemes,
they eventually learned how to combine both techniques in sequence to reach the
quantum regime. Part of this thesis will show precisely how they achieved this and
how we have implemented it in our laboratory.

The groups led by E. Cornell and C. Wiemann, W. Ketterle, and R. Hulet suc-
cessfully created the first Bose-Einstein condensates in 1995 using dilute atomic
alkali vapours and magnetic traps [7, 8, 9]. This achievement earned E. Cornell, C.
Wiemann and W. Ketterle the Nobel prize in 2001.

On the other hand, the creation of the first quantum degenerate Fermi gas had to
wait until 1999 when D.S. Jin’s group [10] achieved the complex feat. Nowadays,
these innovative techniques have become the standard method to produce Bose-
Einstein condensates and quantum degenerate Fermi gases. But additionally to
these phase transitions, quantum gases exhibit other fascinating phenomena such as
superfluidity and macroscopic quantum excitations [11, 12], making ultracold atomic
gases an attractive research topic all by itself.

Furthermore, these systems exhibit a high degree of control, and for this reason,
they can be understood and modeled with unprecedented clarity. Therefore, ultra-
cold atoms are considered to offer a unique scenario to implement quantum simula-
tors of many-body Hamiltonians [13]. The idea behind a quantum simulator can be
explained as follows: if there are two systems which are described by the same equa-
tions (Hamiltonians), but one is very difficult to experimentally study and the other
is simple, then the physics can be studied in the simple system and extrapolated
(mapped) to the complex one. In condensed matter there are many systems which
are not yet fully understood but can be simulated with ultracold atoms. Among
these we have high-Tc superconductors [14], the Josephson effect [15], strongly cor-
related materials, quantum phase transitions [16, 17], and so on. Ultracold atoms
can be used to explore the underlying physics of many of these condensed matter
systems.

But what do we mean when we say these experiments have a high degree of con-
trol? Well, we mean that many of the fundamental parameters of the system can be
finely tuned experimentally. For instance, the dimensionality and geometry of the
system can be manipulated by tailoring optical and magnetic trapping potentials
[18]. As a consequence, control over the trapping potentials also allows to easily
change thermodynamic properties of the gas such as density, temperature and vol-
ume. Another parameter that can be precisely controlled is the interaction strength
between particles which we can manipulate through Feshbach resonances for bosons
[19] and fermions [20] by simply changing an external magnetic field. Moreover, the
quantum statistics of the system itself can be selected by using fermionic or bosonic
atoms in the experiment.
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0.1 Ultracold Matter Laboratory

In this context, the Ultracold Matter Laboratory (LMU, for its acronym in Spanish)
at UNAM’s Institute of Physics was created in Mexico. LMU’s objective is the
production and study of quantum atomic gases, using both fermionic and bosonic
isotopes of lithium (6Li and 7Li respectively). The main reason for using these
atomic species is their broad magnetic Feshbach resonances [21, 22]. As we have
already mentioned, this allows us to manipulate the intensity and sign of interatomic
interactions between particles by applying an external magnetic field. Which in turn
allows us to access very different regimes, from an almost ideal gas, where atoms
interact very weakly, to a strongly interacting system with attractive or repulsive
interactions.

In the particular case of 6Li, if the interactions are repulsive, a molecular bound state
with bosonic statistics is formed, which can lead to Bose-Einstein condensation of
molecules [23, 24]. On the contrary, if the interactions are attractive, a bound state
is formed in momentum space, corresponding to the analog of the Cooper pairs
described by BCS theory [25].

Since it is possible to continuously change the value of the applied magnetic field,
it is also possible to continuously move the system from the BEC side to the BCS
side through the so-called “BEC-BCS crossover” [26]. These systems have been
used in other experiments with the goal of studying phenomena such as collective
excitations [27], the Josephson effect [28] and the existence of quantized vortices
[12], through the BEC-BSC crossover.

The main research line at the LMU is the study of different types of excitations
in atomic superfluid. We are particularly interested in exploring them in Fermi
superfluids across the BEC-BCS crossover. As a first experiment, we have started
to study parametric excitations generated by modulating the trapping potential.
We have identified the generated excitation with the so-called Faraday waves [REF-
ERENCIA]. This experiment is currently in progress, so we only mention it in the
Perspectives section 6.2.1 of this thesis.

As a next step, we plan to study more complex excitations. We have special in-
terest in exploring the phenomenon of turbulence in superfluid gases. The study of
quantum turbulence arises from the interest in understanding turbulence at different
scales. This is still an open problem and is considered one of the most important
problems in modern physics. To study quantum turbulence, the formation of vor-
tices whose angular momentum is quantized is necessary. These have been produced
and studied in Bose-Einstein condensates [11] and in particular across the BEC-BCS
crossover [12]. It should be noted that quantum turbulence has already been ob-
served in bosonic 4He and fermionic 3He liquid superfluids [29]. However, these
systems have disadvantages when trying to analyze the dynamics of the vortices
because they have diameters smaller than 1 nm in contrast with 1 µm presented
in ultracold gases. Quantum turbulence was first observed in ultracold gases in a
Bose-Einstein condensate [30, 31], however, it has not been observed in fermionic
gases yet.

Finally, in the medium term, we plan to carry out a study of the thermodynamic
properties of these systems, with special emphasize in the critical behavior of the
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superfluid-gas phase transition. To do so, we intend to employ a novel formalism in
terms of global thermodynamic variables. This theory was proposed by V. Romero
Rochin et al. [32, 33, 34] to address the problem of thermodynamics in systems where
the concept of rigid walls does not exist and the system becomes inhomogeneous.
In this case, defining variables such as pressure or volumes becomes difficult and a
different thermodynamic approach is necessary.

0.2 This thesis

As discussed before, in order to achieve quantum degeneracy, we need to implement
the last cooling stage, the evaporative cooling. This process consist in transfer
the atoms into a conservative potential and then reduce dynamically the height of
potential removing selectively the hottest particles.

Then, this trapping potential has exceptional properties, like there is no energy
exchange between the potential and the atoms, but there is still some interaction to
trap the atoms. Also, this potential needs to be able to be dynamically changed.

This thesis is centered in the theoretical concepts and experimental implementation
of this exceptional atom trap, the optical dipole trap (ODT), for the capture of 6Li
quantum gases.

This work also presents the time-averaged optical potential (TAP) technique, which
allows us to create a moldable geometry ODT to have better trap properties control.
The design and implementation of the optical system which allows the creation of
TAP for the manipulation of 6Li quantum gases is also documented in this thesis.

The TAP basic idea to control the size and geometry of the beam waist involves
rapidly modulating the position of the laser beam focus. The timescale of the
modulation is much faster than the radial trap frequency. By doing so the atoms
do not respond to the “instantaneous” motion of the beam and instead “see” a
potential proportional to the time-averaged intensity profile.

This thesis is organized as follows:

• In Chapter 1, a brief theoretical introduction to interacting Fermi gases is
given. Here, we discuss how it is possible to change the interaction between
the two-component spin of a Fermi gas using a Feshbach resonance. This re-
sults in different interaction regimes which make possible to generate different
superfluid states, such as a BEC or a BCS-like system, or even transit between
them through the so-called BEC-BCS crossover.

• In Chapter 2 we discuss theoretically how to use lasers and magnetic fields to
cool and trap 6Li atoms. We distinguish between two principal light-produced
forces, the radiation force used to create the MOT, optical molasses and sub-
Doppler cooling, and the dipole force used to create the ODT. At the end of
the chapter, we describe theoretically the evaporative cooling process.

• In Chapter 3 we describe our experimental setup and methods to produce
quantum gases. We detail the experimental process to transfer the atoms from
the previous cooling stages (Doppler and sub-Doppler cooling) to the ODT.
Also, the evaporative cooling was optimized and complemented with TAP,
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which allows us to produce quantum degenerate superfluid samples containing
about 6 × 104 atoms at a temperature of approximately 20 nK and a phase-
space density of the order of 10.

• In Chapter 4, the theoretical concepts and experimental implementation of the
TAP is presented. Additionally, a theoretical treatment for TAP is developed
summarizing into an algorithm, with which it was possible to obtain almost any
desirable geometry for the ODT. The different geometries for ODT that TAP
allows us to create go from a double well to a box or a harmonic potentials.
Also, once the geometry is selected, it is also possible to scale its dimensions.
This allows us to control the size and volume of the trap.

• In Chapter 5 we present the results of manipulate geometrically the quantum
gases. For example, using harmonic geometry, it is possible to manipulate the
ODT waist to go from 40.0(26) µm to 128.6(26) µm in a continuous way.

An important result of this thesis is the design and study of an experiment
whose objective is to observe the BEC phase transition decreasing the vol-
ume, but keeping the temperature and the number of atoms constant. This
experiment has a new perspective on what is usually done in the field of ultra-
cold atoms, where it is the temperature the control parameter to achieve the
Bose-Einstein condensation.

Finally, the double-well geometry trap is tested on the atoms, which allows
us to obtain two quantum samples whose separation we can finely controlled,
showing the versatility of TAP. With this configuration it was possible to carry
out an experiment in which we definitively concluded that we have samples
in the quantum regime. This was achieved by allowing the two samples to
interact and since they behave like matter waves, an interference pattern was
observed.

• In Chapter 6 we present the conclusions and perspectives. As a perspective,
we present the effects of modulating the trap at a much slower rate, in such
a way that the “time-average” condition is not fulfilled. In this way, the trap
geometry dynamically varies, generating collective excitations in the sample.
We present some very preliminary results on the study of this specific type of
parametric excitation that we identify as Faraday waves.



Chapter 1

Interacting atomic gases

1.1 Ideal Fermi gas in a harmonic trap

In our experiment, fermionic 6Li atoms are cooled down. To understand how this
is done we need to review the theory of ultracold Fermi gases. For that purpose we
will now follow the derivation presented in a review by Stringari et al. [35]. Let us
consider the simplest model, the ideal Fermi gas model in a harmonic potential of
the form

V =
1

2
m(ω2

xx
2 + +ω2

yy
2 + ω2

zz
2). (1.1)

Since the number of atoms N is very large (N � 1) the semi-classical approach can
be used. Considering this description and using the local-density approximation for
the Fermi distribution function [34] of a given spin species we have

f(r,p) =
1

eβ[p2/2m+V (r)−µ] + 1
, (1.2)

where β = 1/kBT and µ is the chemical potential. Integrating the Fermi distribution
over spatial and momentum coordinates we obtain

N =
1

(2π~)3

∫
drdpf(r,p) =

∫ ∞
0

g(ε)dε

eβ[ε−µ] + 1
, (1.3)

Here we have introduced the density of states g(ε) = ε2/2(~ω̄)3 where the geometric
mean of the trapping frequencies is ω̄ = (ωxωyωz)

1/3.

In the limit where T = 0, the integral in equation (1.3) can be analytically solved
to obtain the Fermi energy (the Fermi distribution becomes a step-function which
is zero when the energy is larger that the chemical potential). The resulting Fermi
energy is

N =
1

2(~ω̄)3

∫ EF

0

ε2dε→ EF = (6N)1/3~ω̄ (1.4)

7
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and we set this energy to be equal to the chemical potential µ when T = 0.

We can then define a useful set of variables in terms of the Fermi energy, such as
the Fermi temperature TF and the Fermi wave-vector kF

TF ≡
EF
kB

=
(6N)1/3

kB
~ω̄, (1.5)

kF ≡
√

2mEF
~

=

√
2m(6N)1/3ω̄

~
. (1.6)

Moreover, the Fermi energy (1.4) can be used to define the length scales charac-
terizing the Fermi distribution in coordinate space in the following way, RFi

=√
2EF/mω2

i gives the width of the density distribution at T = 0, which can be
calculated by integrating the distribution function (1.2) in momentum space,

n(x, y, z) =
8

π2

N

RFxRFyRFz

(
1− x2

R2
Fx

− y2

R2
Fy

− z2

R2
Fz

)3/2

(1.7)

To make physical sense, this quantity is defined to be strictly positive and hence it
is equal to zero for every point where it results in a negative value. This formula is
often referred to as the Thomas-Fermi distribution as we will discuss later in this
chapter.

As we explain in the next section, ultracold identical fermions are nearly non-
interacting systems due to Pauli blocking. Therefore, the ideal Fermi gas is an
excellent approximation to describe them. Additionally, in the next section we also
introduce a theoretical treatment to analyze a two-component spin mixture with
interactions.

1.2 Interactions by two-body collisions

As we will discuss later in section 1.2.2, we have two distinguishable half-spin par-
ticles in our experiment which correspond to the lowest energy hyperfine states of
6Li. These states are nearly equally populated. Each species does not interact with
itself due to Pauli blocking, but they do interact with each other. Therefore it is
necessary to introduce a theoretical treatment to describe the two-component spin
mixture with interactions.

One of the main results of this treatment is that at very low temperatures one finds
that the collision can be parameterized by a single constant which is the scattering
length as. The absolute value of as determines the interaction strength and its sign
defines if the interaction is effectively repulsive (as > 0) or attractive (as < 0).

In the next subsection we elaborate on the main results of the theory of elastic
scattering in the s−wave channel [36, 37] and in the subsequent subsection we discuss
about Feshbach resonances which is the mechanism that allows us to control the
value of the scattering length to access different interaction regimes, from weakly to
strongly interacting systems, from a repulsive to an attractive gas.
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Figure 1.1: Left: pictorial representation of an ideal Fermi gas in a harmonic trap at
T = 0. As a consequence of the Pauli exclusion principle, fermions form a Fermi sea
in which each energy state up to the Fermi energy EF is occupied. Right: pictorial
representation of two ideal Fermi gases in a harmonic trap at T = 0. Each Fermi
gas has different spin, which we portray by using two different colors. We assume
there is not interaction between the spin components, and therefore each of them
can be treated as a Fermi sea with its own Fermi energy EFi
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1.2.1 Scattering

Interaction effects in quantum degenerate, dilute Fermi gases can be accurately
modeled by a small number of parameters characterizing the physics of two-body
collisions. The parameter which determines the quantum degeneracy of a sample is
known as the phase space density (PSD) and is given by

ρ(n, T ) = nλ3
T = n

(
~2

2πmkBT

)
(1.8)

where λT is the de Broglie thermal wavelength associated to the atoms, and n the
atom density. The PSD measures the number of atoms inside a cube whose side is
λT . When ρ > 1, i.e. low temperature and large density n, the system is degenerate.

Under these conditions, the spatial range r0 of the interatomic potential is much
smaller than both λT and the inverse Fermi wave vector k−1

F

r0 � λT , r0 � k−1
F , (1.9)

then, two interacting atoms cannot be considered as point-like particles anymore.
They need to be treated as two wave-packets which have a two-body wave function
that describes the collision.

According to Cohen-Tannoudji et al. [36], the problem of describing the collision
process between two wave-packets reduces to solving the Schrödinger equation

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2mr

∇2 + V (r)

)
Ψ(r, t) (1.10)

in the well known center of mass coordinate system, where mr is the reduced mass
and r = r1 − r2 is the relative coordinate of the two particles. This describes the
evolution of the incident wave-packet in the presence of a potential V (r) whose
center can be considered as the scattering center in the problem.

Using the stationary states, the solution is of the form Ψ(r, t) = ψ(r)e−iEt/~ where
ψ(r) is the solution to the time-independent Schrödinger equation

Eψ(r) =

(
− ~2

2mr

∇2 + V (r)

)
ψ(r) (1.11)

where E = ~2k2

2mr
is the kinetic energy of the incident wave-packet before the collision.

This equation is subject to the condition that the incoming component of the wave
function is a plane wave eik·z because we assume that the wave-packet has a well-
defined energy E (and hence it also has a well defined momentum ~k) before the
collision.

When the plane wave reaches the region of influence of the potential V (r), it is
scattered. Near the scattering center, the evolution of the system is very complex
but (fortunately) we are not interested in describing it with detail. However, far
from this region, at r � r0, the stationary scattering state ψ(r) can be considered
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as a superposition of a transmitted plane wave eik·z which continues to propagate
along ẑ and a scattered wave with the shape of an ”outgoing” spherical wave eikr.

This spherical wave needs to have two additional factors to satisfy the equations.
The first one is a 1/r factor that satisfies the radial component of (1.11) in spherical

coordinates because (1
r
∂2

∂r2
r+ k2) e

ikr

r
= 0. The second factor is the so-called scatter-

ing amplitude f which contains all of the information of the collision, therefore it
depends on the shape of the potential V (r) and the kinetic energy associated to the
wave vector k. Assuming that V (r) = V (r) is a central potential, f depends only
of the scattering direction θ, because the problem is symmetric with respect to the
incident wave axis (the z−axis).

Figure 1.2: Representation of the scattering process. The incident plane wave eik·z

is represented by red parallel lines. The scattering center (a potential V (r)) is
represented by the black solid circle. When the plane wave reaches the region
of influence of the potential, it is scattered. Far from this region, the stationary
scattering state ψ(r) can be considered as a superposition of a transmitted plane
wave eik·z which continues to propagate along ẑ and a scattered wave with the shape
of an ”outgoing” spherical wave eikr represented by the circular orange lines.

Therefore, the wave function ψ(r) associated with the stationary scattering state is
the solution of (1.11) whose asymptotic behavior r � r0 is of the form

ψ(r)→ eik·z + f(θ, k)
eikr

r
. (1.12)

The corresponding asymptotic probability flux is then given by
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j =
~
imr

Re

[(
eik·z + f(θ, k)

eikr

r

)∗
∇
(
eik·z + f(θ, k)

eikr

r

)]
. (1.13)

An expansion leads to two terms with exponential factors of the form e±ikr(1−cosθ)

where θ is the angle between k and r. When r →∞ it leads to a fast oscillation of
this factor and therefore we can then keep only those terms where it is equal to 1
to obtain

j =
~k

mr

+
~k
mr

|f(θ, k)|2

r2
r̂ + ...., (1.14)

where the first term represents the incident flux, while the second describes the
radial flux of the scattered wave. Thus one can obtain the differential cross-section
defined as the ratio of the scattered flux to the incident flux

dσ =
mr

~k
j · dS =

|f(θ, k)|2

r2
r2dΩ = |f(θ, k)|2dΩ. (1.15)

Notice that the total probability flux passing through a sphere of radius r is inde-
pendent of r. This is due to the 1/r factor that we added to the spherical wave in
equation (1.12).

But how do we transform these theoretical results into a method to compute the
characteristics of a particular scattering problem? Well, in general, for any Hamil-
tonian with a central potential V (r) (1.11) the wave-function ψ(r) can be expanded
as

ψ(r) =
∞∑
l=0

Rk,l(r)Pl(cos θ) =
∞∑
l=0

1

r
uk,l(r)Pl(cos θ) (1.16)

where Pl(cos θ) are the Legendre polynomials and Rk,l(r) are the radial solutions
to the radial component of equation (1.11), which are expressed (for practicality
reasons) as 1

r
uk,l(r) to solve the radial equation

~2k2

2mr

uk,l(r) =

(
− ~2

2mr

d2

dr2
+
l(l + 1)~2

2mrr2
+ V (r)

)
uk,l(r), (1.17)

with the restriction at the origin that uk,l(0) = 0.

Each term in the series (1.16) is known as a partial wave. The partial wave is an
eigenfunction common to the Hamiltonian and angular momentum operators L2

and Lz with associated eigenvalues ~2l(l+ 1) and 0 respectively. Following standard
spectroscopic notation, the values of the angular momentum number l = 0, 1, 2, ...
are referred to as the well-known s, p, d, ... waves.

After analyzing the asymptotic behavior r � r0 of the radial equation (1.17) [36],
substituting it in the partial waves series (1.16) and comparing this asymptotic
partial waves expression with equation (1.12), we find that the scattering amplitude
to be of the form
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f(θ, k) =
1

2ik

∞∑
l=0

(2l + 1)(ei2δl(k) − 1)Pl(cos θ) (1.18)

which we can use to integrate dσ in equation (1.15), obtaining the total cross-section

σ(k) =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k), (1.19)

where δl(k) is called the phase shift of the partial wave l because it can be interpreted
as a phase difference between incoming and outgoing waves. As the incoming wave
leaves the region of influence of the potential, it is transformed into an outgoing
wave, and it has accumulated a phase shift of 2δl(k) relative to the free outgoing
wave that would have resulted if the potential V (r) had been identically zero.

Under the conditions of low temperature and large interparticle mean distance re-
quired by equation (1.9), the main contribution to the scattering amplitude comes
from the s−wave state. An extra constraint comes from the antisymmetry of the
wave function of identical fermions, which excludes the ocurrence of s−wave scat-
tering between same spin particles. This is what we previously referred to as Pauli
blocking in section 1.1. As a consequence, only particles in different spin states can
interact.

The s−wave scattering amplitude f0(k) loses its angular dependency in equation
(1.18) due to P0(x) = 1, so it does not depend on the scattering angle. Therefore
that the s−wave scattering amplitude can be written as

f0(k) =
1

2ik
(e2iδ0(k) − 1)

=
eiδ0(k)

2ik
(eiδ0(k) − e−iδ0(k))

=
sin(δ0(k))

ke−iδ0(k)

=
sin(δ0(k))

k[cos(δ0(k))− i sin(δ0(k))]

=
1

k cot(δ0(k))− ik
. (1.20)

Then applying equation (1.15) directly to f0(k) results in an s-wave total cross-
section

σ0(k) =
4π

k2 cot2 δ0(k) + k2
=

4π

k2
sin2 δ0(k) (1.21)

which is the same result that we obtained with equation (1.19).



14 CHAPTER 1. INTERACTING ATOMIC GASES

Example: Scattering resonance in a spherical well

We fully develop this example to show how to explicitly find the partial s-wave phase
shift δ0(k) in the problem of quantum scattering from an attractive spherical well
potential. This potential is equal to V (r) = −V0 for r < r0 and V (r) = 0 everywhere
else. As we have already mentioned, at low energies, the scattering is dominated by
the s-wave l = 0 mode. Therefore the radial equation (1.17) we have to solve is of
the the form

(
d2

dr2
+ k2

0 + k2

)
uk(r) = 0, (1.22)

where k2
0 = ~2V0

2mr
for r < r0 and k2

0 = 0 everywhere else. Inserting the boundary
condition uk(0) = 0 at the origin, the solution is

uk(r) =

{
C sin(Kr) r < r0

sin(kr + δ0(k)) r > r0

, (1.23)

where K2 = k2 + k2
0 and δ0(k) is the partial s-wave phase shift. The continuity

condition for the wave-function C sin(Kr0) = sin(kr0 + δ0(k)) and its derivative
CK cos(Kr0) = k cos(kr0 + δ0(k)) at r = r0 implies the relation tan(Kr0)k/K =
tan(kr0 + δ0(k)). From this last expression, we can solve for the s-wave phase shift

δ0(k) = arctan

[
k

K
tan(Kr0)

]
− kr0. (1.24)

Using the identity for the tangent of an angle difference, we get

tan δ0(k) =
k
K

tan(Kr0)− tan(kr0)

1 + k
K

tan(Kr0) tan(kr0)
, (1.25)

or, more conveniently,

k cot δ0(k) =
k + k2

K
tan(Kr0) tan(kr0)

k
K

tan(Kr0)− tan(kr0)
≡ − 1

as
+

1

2
R0k

2, (1.26)

where in the last expression1 we define the so-called scattering length as = K tan(kr0)−k tan(Kr0)
kK

and the effective range of the interaction R0 = 2 tan(Kr0) tan(kr0)
k tan(Kr0)−K tan(kr0)

which is usually
of the same order of r0.

In the low energy regime k → 0, then K ≈ k0 and tan(kr0) ≈ kr0 which can be
substituted in the expression for scattering length to obtain

as ≈ r0

(
1− tan(k0r0)

k0r0

)
(1.27)

1L. Landau himself proposed a similar expression [37].
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which is independent of k. Notice that in this regime k → 0 we can also make
the approximations k cot δ0(k) ≈ −1/as by equation (1.26), then f0 = −as by
equation (1.20) and σ0 = 4πa2

s by equation (1.21) which are independent of k as
well. Although this cross section has the same form of the one of two coilliding hard
sphers with radii equal to the scattering length as, we should not forget that we
are describing interacting waves. This scattering is isotropic and independent of the
particle energy.

Therefore, the scattering length as at low energies only depends on the potential

characteristics i.e. on r0 and k0 =
√

~2V0
2mr

. Therefore, we can calculate the scattering

as a function of k0r0 as follows. First we plot the functions tan(k0r0) and k0r0

(in blue and red respectively on the left side of figure 1.3). as is computed as the
substraction of the red an blue lines, divided by k0r0, resulting in the purple line on
the right side of figure 1.3.

Figure 1.3: Left: the functions tan(k0r0) and k0r0 are shown in blue and red respec-
tively. Right: as is computed as the substraction of the red an blue lines, divided
by k0r0, resulting in the purple line. If k0r0 < π/2, as is negative. As we ap-
proach π/2 from the left; k0r0 → (π/2)−, the scattering length tends to be infinitely
negative i.e. as → −∞. On the other hand, as we approach π/2 from the right;
k0r0 → (π/2)+, the scattering length tends to be infinitely positive i.e. as → +∞.
Finally, if π/2 < k0r0 < 4.4934, as is positive and tends to zero.

Then, if k0r0 < π/2, as is negative. As we approach π/2 from the left; k0r0 →
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(π/2)−, the scattering length tends to be infinitely negative i.e. as → −∞. On
the other hand, as we approach π/2 from the right; k0r0 → (π/2)+, the scattering
length tends to be infinitely positive i.e. as → +∞. Finally, if π/2 < k0r0 < 4.4934,
as is positive and as = 0 at the numerical value k0r0 = 4.4934.

By analyzing the tangent line of the radial equation (low energies) u0(r) = C sin(k0r)
at the boundary condition r = r0, we obtain (via the point-slope formula) that the
linear equation is y = C cos(k0r0)(k0r − k0r0) + C sin(k0r0). Searching where (r)
the line intercepts with the x−axis (y = 0) we obtain the same expression as the
scattering length (1.27). Therefore we have found a new geometrical interpretation
for the scattering length. This geometrical approach is exemplified for 3 values of
k0r0 (at fixed r0) in figure 1.4. The radial equation u0(r) is plotted in green. The
dotted purple lines are the tangent lines to u0(r) at boundary condition r0 = 1. The
black dots are the tangent points at r0 = 1.

Figure 1.4: Analysis of the tangent line (dotted purple line) of the radial equation
with k → 0 and C = 1; u0(r) = sin(k0r) (green lines) at the boundary condition
r = r0 = 1 (black dots) for three values of k0r0 = π/4, π/2, 3π/4. The point
where the tangent line intercepts the x−axis turns out to be the scattering length

as = r0

(
1− tan(k0r0)

k0r0

)
. This intercept point is marked as a purple dot. The as

values correspond with the values displayed to the right of figure 1.3. Note that
when the depth of the well is gradually decreased, as diverges at k0r0 = π/2. This
phenomenon is called a scattering resonance, and has to do with the fact that the
potential well is barely able to support an s-wave bound state.

We can observe from figure 1.4 that when the depth of the well is gradually decreased
(at fixed r0), as and in consequence σ0 diverge at k0r0 = π/2 (central part of figure
1.4). This phenomenon is called a scattering resonance and has to do with the
fact that the potential well is barely able to support an s-wave bound state.. One
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important observation is that the scattering length as changes its sign when k0r0

passes through a bound state. This process repeats itself with the appearance of a
second scattering resonance and a second bound state at k0r0 = 3π/2 (right part of
figure 1.3), and in fact it is periodic every odd multiple of π/2.

In summary, if we are able to change the scattering properties of the atoms k0r0,
we can control the scattering length as of two atoms. But changing the scattering
properties would require changing the actual shape of the interatomic potential,
which for all practical reasons is impossible.

However there is a different phenomenon that allows us to tune the effective in-
teraction between atoms, the magnetic Feshbach resonance. This phenomenon is
more complex to explain theoretically [38], but has many of the characteristics of a
resonance presented in this example.

In the next section we introduce the Feshbach resonance, and how the scattering
length can be easily controlled experimentally by means of an external magnetic
field.

1.2.2 Feshbach resonance and interaction regimes

Up to this point, we have only considered two-body elastic collisions. Elastic scat-
tering refers to an interaction event between free particles that does not change the
internal quantum state or quantum numbers of the involved particles. In a simple
system composed by two half-spin particles, it turns out that the sum of the spin
angular momentum can be S = 0 or S = 1, called a singlet and a triplet correspond-
ingly. This two possible total spin angular momentum configurations constitute by
definition two scattering channels.

In our previous example 1.2.1, we have considered two-body elastic collisions that
occur in a single scattering channel in the s-wave limit. This implies that, despite
the scattering, the two-particle system remains in the same scattering channel as it
was before the interaction.

In the case of multi-channel scattering, various collision channels are possible and
they are coupled by the scattering interaction. The importance of multi-channel
scattering is that a crucial phenomenon called a Feshbach (or Fano-Feshbach) res-
onance emerges [39]. Broadly speaking, this resonance occurs when a bound state
of one channel becomes degenerate in energy with the scattering state in another
channel. The theoretical treatment that describes this process is beyond the scope
of what we wish to discuss here but the reader can refer to Stoof [38] where a
two-channel model for a Feshbach resonance between two alkali atoms is presented.

From this point on, we are going to explain the Feshbach resonance, in the context
of our experiment using 6Li. We first consider two distinguishable half-spin particles
labeled as |1〉 and |2〉 which correspond to the two lowest energy hyperfine states in
the 6Li. As we said in the beginning of this section, there are two channels, the singlet
(S = 0) and triplet (S = 1) configurations. Each channel has different associated
interatomic potentials (figure 1.5) which we refer to as “open” (or entrance) and
“closed” channels for the triplet and singlet cases respectively.

Similar to our previous scattering resonance example 1.2.1, where the resonance
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Figure 1.5: Two-channel schematic model of a magnetic Feshbach resonance. The
potentials corresponding to each channel are tuned relative to each other using an
external magnetic field. When the bound state energy is below the scattering state
energy we have that a > 0 and viceversa.



1.2. INTERACTIONS BY TWO-BODY COLLISIONS 19

appears when a bound state becomes degenerate in energy with the free particle
state, the Feshbach resonance phenomenon occurs when the bound state of the
closed channel becomes degenerate in energy with the scattering state of the open
channel.

The bound state in the case of a Feshbach resonance is a molecular state. This
molecular state is created when two free 6Li atoms couple to form a molecule 6Li2
in which the atoms are tightly bound [23]. The closer this molecular level lies with
respect to the energy of two free atoms, the stronger the interaction strength between
them.

Since the magnetic moments of the pairs of atoms in the two channels are different,
the energy difference between the two free atoms and the molecular state can be
easily controlled experimentally by means of an external constant magnetic field.
Therefore, the magnetic field controls the interatomic interaction strength.

We use this resonances experimentally to tune the interaction between atoms (parametrized
by the scattering length) almost at will by changing the value of a constant magnetic
field in the system [26]. Close to a Feshbach resonance, the scattering length as a
function of the magnetic field B, is described by the formula

as = a0

(
1− ∆B

B −B0

)
, (1.28)

where the resonance occurs at a magnetic field B0 =832G, ∆B ≈300G is the width of
the resonance and a0 is the background scattering length away from the resonance.
One reason to use the Feshbach resonance between state |1〉 and |2〉 is that it is very
broad (figure 1.6), enabling very fine and precise control of the scattering length.

A very important consequence of having such control over interatomic interactions is
the possibility of exploring different interaction regimes. In fermionic systems, the
interaction strength is commonly parametrized by introducing the dimensionless
interaction parameter 1

kF as
where kF is the Fermi wave vector.

On the side of the resonance, where the scattering length is positive 1
kF as

> 0, the
molecular energy level is lower in energy than the energy of two unbound atoms.
The molecular state is thus“real” and stable, and atoms tend to form molecules.
If those atoms are fermions, the resulting diatomic molecule is a bosonic molecule.
A gas of these dimers exhibits bosonic statistics making the emergence of Bose-
Einstein condensation (BEC) possible after cooling down the sample. This side of
the resonance is therefore called the “BEC-side”.

On the side of the resonance where the scattering length is negative 1
kF as

< 0,
molecules are unstable. Nevertheless, when surrounded by a Fermi sea, two fermions
can still form a loosely bound pair (in momentum space), whose size can become
comparable to or even larger than the average distance between particles. After
cooling down these fragile pairs, a “BCS-state” is formed. This is closely associated
to what occurs in superconductors, in which current flows without resistance thanks
to electron pairs (“Cooper pairs”) well described by BCS theory [25].

Additionally, the Feshbach resonance allows to continuously transit between the
BEC and the BCS regimes through the so-called BEC-BCS crossover. This inter-
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Figure 1.6: Feshbach resonance for the two lowest hyperfine Zeeman levels of 6Li
labeled as |1〉 and |2〉. Different superfluid regimes are accesible depending on the
value of the scattering length as.

mediate regime −1 < 1
kF as

< 1 is also known as the “Unitary Limit” and contains

the point where the scattering length diverges 1
kF as

= 0. This regime is particularly
interesting because the system is strongly interacting and strongly correlated. In
fact, in the unitary limit the scattering amplitude (1.20) and (1.26) at wave vec-
tors k � 1/|R0| obey the universal regime f0(k) = −i/k, which is independent of
the interaction. Understanding the physics of the BEC-BCS crossover is of profound
interest due to its relationship with important phenomena such as high-Tc supercon-
ductivity [14] and superfluidity in neutron stars or quark-gluon plasma [40, 41, 42].

Figure 1.6 also shows the different superfluid regimes depending on the value of
the scattering length as. At the LMU we are able to produce ultracold fermionic
superfluid samples of 6Li in the three different interaction regimes presented in
section 3.2.2. Absorption images of these samples are shown in figure 3.13.

1.3 Weakly interacting Bose gas

While we are able to produce ultracold fermionic superfluid samples at different
interaction regimes, this thesis will focus on the BEC regime. Therefore, a brief
description of the weakly interacting Bose gas needs to be introduced.

As we discussed in the last section, in the BEC side of the Feshbach resonance
bosonic diatomic molecules are formed. This dimers of size as have a binding energy
εb which does not depend on the short-range details of the potential and is simply
given by
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εb =
~2

2mra2
s

. (1.29)

At first glance these molecules can interact either with dimers or with single atoms.
Nevertheless the probability of atom-dimer collisions is suppressed by the Pauli
principle, because two of the three atoms always have the same spin. According to
Petrov [43] the dimer-dimer scattering length is add ≈ 0.6as.

Taking into account the low momenta case (kas � 1) where the interaction is weak
and expressing the new scattering length between dimers add in terms of as, this
bosonic gas can be described using the mean-field theory developed by Gross and
Pitaevskii [44, 45] in 1961. According to this theory, valid at T = 0, the BEC can be
described by a wave function Ψ(r, t) which is a solution to the differential equation

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2M
∇2 + V (r) +

4π~2add
M

|Ψ(r, t)|2
)

Ψ(r, t), (1.30)

where M is the mass of the dimer. This wavefunction must fulfill the normalization
condition N =

∫
|Ψ(r, t)|2 dr where N is the total number of particles in the gas.

This equation looks similar to the Schrödinger equation with the addition of an
interaction term g|Ψ(r, t)|2. This term transforms the equation into a non-linear
differential equation and for this reason it is called a non-linear Schrödinger equation
(NLSE) or, more commonly, the Gross-Pitaevskii equation (GPE).

Using separation of variables method one can propose a solution Ψ(r, t) = θ(t)ψ(r)
written as the product of a temporal-function and spatial-function. Substituting
this we get that θ(t) = e−iµt/~ but to find ψ(r) it is necessary to solve

µψ(r) =

(
− ~2

2M
∇2 + V (r) + g|ψ(r)|2

)
ψ(r) (1.31)

which is called the time independent GPE. Here µ emerges mathematically from the
separation of variables method as an integration constant, but later on it is identified
as the chemical potential. Considering the normalization condition N =

∫
|ψ(r)|2 dr

then the BEC density can be calculated simply as n(r) = |ψ(r)|2.

In the low temperature limit, the kinetic term − ~2
2M
∇2ψ(r) can be neglected and

then the mean-field interaction term gn(r) determines the dynamics of the BEC. In
this limit, the GPE can be trivially solved to find the density, obtaining

n(r) =
1

g
(µ− V (r)) (1.32)

which is the so called Thomas-Fermi approximation. Then the BEC density only
depends on mean-field interactions and the shape of the confinement potential. Now,
considering a harmonic potential (1.1), the BEC density is

n(x, y, z) =
1

g

(
µ− 1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

)
. (1.33)
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To make physical sense, this quantity is defined to be strictly positive and hence it
is set equal to zero for every point where it results in a negative value. If we plot the
density in function of the ith-direction, this expression results in a parabolic profile,
plotted as a solid red line in the right panel of figure 1.7. This profile corresponds
to the bimodal fit presented in section 3.2.2.

By setting (1.33) equal to zero the maximum extension of the BEC is

RTFi
=

1

ωi

√
2µ

M
(1.34)

These limits along the i = x, y, z directions are known as the Thomas-Fermi radii.

Integrating (1.33) over the three dimensions and using the normalization condition,
one finds that the chemical potential is

µ =
~ω̄
2

(
15addN

aho

)2/5

(1.35)

where aho =
√

~/Mω̄ is the harmonic oscillator length.

After this brief introduction where we have discussed our research topic and moti-
vations, we now move our attention to more practical issues. The next chapter is
centered around laser cooling techniques and their theoretical treatment.
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Figure 1.7: Left: pictorial representation of an ideal Bose gas at T = 0. Here the so
called composite bosons are molecules formed by two fermions with opposite spin.
All of the bosons remain at the lowest energy state. Right: density profile of a BEC
along one direction according to the Thomas-Fermi approximation.
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Chapter 2

Magnetic and optical potentials

Before presenting the implementation of the different cooling techniques employed in
our experiment, it is necessary to describe how laser light can be used to slow down
the motion of atoms. The theoretical treatment about laser cooling is developed in
this chapter following the references [46] and [47]. Additionally, it is important to
mention that we are going to describe such cooling stages following the same order
in which they are employed in the time sequence of our experiment.

First, we discuss about the concept of radiative force (section 2.2) and how it is used
to slow down the atoms. This force is velocity dependent, and therefore it does not
confine the atoms in a particular place, it simply slows them down. For this reason,
this cooling mechanism must be complemented with additional magnetic fields (see
section 2.2.3) to create an electromagnetic “container” to spatially confine the atoms.
This combination of optical cooling and magnetic trapping is known as “Magneto-
Optical Trap” (MOT). The temperature reached by magneto-optical trapping is
typically restricted by the Doppler limit. Therefore, sub-Doppler cooling techniques
are necessary to further cool down the sample (see section 2.2.5).

After these first two cooling stages, it is necessary to transfer the atoms into a con-
servative potential. To do this, a different type of optical force is employed, the
so-called dipole force (see section 2.3). This force is used to create a harmonic trap
in which the laser cooled atoms are transferred (section 2.3.2). This is known as
“Optical Dipole Trap” (ODT). It is in the ODT where the last cooling state can be
applied to finally reach quantum degeneracy through the evaporative cooling stage,
which we describe in section 2.3.4. We also complement the ODT with additional
magnetic fields to create a better confinement (section 2.3.3). We put special em-
phasis in the theoretical description of the ODT, since it is one of the main topics
of this thesis.

2.1 Mechanical effects of light on atoms

Generally speaking, there are two types of mechanical forces that light can exert
on atoms [6]. The fist one, the radiation force, is consequence of the absorption
and scattering of the incident light and it is related to the imaginary part of the
polarizability α(ω), as can be seen in equation (2.29), where ω is the frequency of the

25
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incident light. The second one, the dipole force, arises from the interaction between
the electric dipole moment of the atoms with the electric filed of the light, and it is
related to the real part of α(ω), as shown in eq. (2.57).

In this section we discuss the theoretical background necessary in sections 2.2 and
2.3 to obtain the expression for all these light forces.

2.1.1 Polarizability: Lorentz model

First of all, we will use the following complex notation for the electromagnetic fields:

E(r, t) = E(r)cos(ωt+ φ) = E(r)
e−iφ

2
e−iωt + E(r)

eiφ

2
eiωt ≡ E+(r) + E−(r). (2.1)

Here, we separate them into components with positive and negative frequency, which
we denote, respectively, with the superscripts + and −. Notice that one is the
complex conjugate of the other. Then, we can always write the physical field as
E(r, t) = E+(r) + c.c. which is a convenient mathematical notation.

Now, we obtain an expression for the polarizability α(ω). Although atoms do not
have a permanent electric dipole moment, it can be induced by the electric field of
the light with which they interact. To obtain α(ω), we model the atom as a damped
harmonic oscillator. This model is known as the Lorentz model of the atom. In
this approximation, we model the atom as an electron harmonically bounded to the
nucleus and forced by an electric field. The corresponding equation of motion of the
electron is

mẍ+ +mγẋ+ +mω2
0x

+ = −ε̂eE+
0 e
−iωt. (2.2)

Here, x+ represent the average position of the electron, ω0 is the resonant frequency
of the harmonic potential, the damping term models radiation due to the charge
acceleration and collisions with other atoms. A semi quantum-mechanical calcula-
tion shows that for an isolated atom, the damping rate γ can be identified as the
spontaneous emission rate (section 2.1.3). The above equation is expressed in the
center-of-mass coordinates, thus m is the reduced mass of the electron and also we
can ignore the motion of the nucleus. We are considering the dipole approximation
in the last term in the above equation, which consists in assuming that the size of the
atom is much smaller than the optical wavelength, so that the electron only “sees”
the field at the nuclear position. The model also does not consider the spatial de-
pendence or the direction of propagation of the field. Then the force on the electron
due to the interaction with a monochromatic field is F+ = −eE+ = −eε̂E+

0 e
−iωt

where e is the fundamental electric charge.

Considering an ansatz of the form x+(t) = ε̂x+
0 e
−iωt that has the same time depen-

dence as the field, the equation (2.2) becomes

−mω2x+
0 − imγωx+

0 +mω2
0x

+
0 = −eE+

0 , (2.3)

which we can solve for x+
0 to obtain the solution
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x+
0 =

eE+
0 /m

ω2 − ω2
0 + iγω

. (2.4)

The dipole moment of the atom is

d+ = −ex+ (2.5)

where x = ε̂x. Since the dipole moment is induced by the field, we can define the
polarizability α to describe how easily the field induces such dipole by

d+ ≡ α(ω)E+ (2.6)

then from equations (2.4) and (2.5), we can write polarizability as

α(ω) =
e2/m

ω2
0 − ω2 − iγω

. (2.7)

It is important to emphasize that α is a complex quantity defined for the positive-
rotating field by definition.

2.1.2 Dipole Radiation and Damping Coefficient

After finding the polarizability α under the Lorentz model, it is necessary an ex-
pression for the damping term γ. To find γ in a classical description, first we need
to explain how an oscillating dipole irradiates. The expression of the emitted power
will be useful in section 2.2 to explain the radiative force.

In the electric and magnetic fields for an oscillating dipole only the 1/r terms trans-
port energy to infinity [48]. These radiation terms are

E+(r, t) ≈ 1

4πε0c2
[(ε̂ · r̂)r̂ − ε̂] d̈

+(tr)

r
, (2.8)

H+(r, t) ≈ 1

4πc
(ε̂× r̂) d̈

+(tr)

r
, (2.9)

where tr = t − r/c is the retarded time, and ε̂ is the polarization unit vector of
the applied field and, hence, the dipole orientation vector. The energy transport is
described by the Poynting vector, which can be written as

〈S〉 = E+(r, t)×H−(r, t) + c.c.,

=
1

16π2ε0c3

|d̈+|2

r2
[(ε̂ · r̂)r̂ − ε̂]× (ε̂∗ × r̂) + c.c.,

=
1

8π2ε0c3

|d̈+|2

r2

(
1− |r̂ · ε̂|2

)
r̂, (2.10)

where we have used that [(ε̂ · r̂)r̂− ε̂]× (ε̂∗× r̂) = (1− |r̂ · ε̂|2) r̂. This term is a real
number, so its c.c. has the same value and it is taken into account by multiplying
by two the first term of 〈S〉.
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There are two important cases for the polarization vector. The incident light can
be linearly or circularly polarized. For the case of linear polarization, ε̂ = ẑ, we
have 1 − |r̂ · ε̂|2 = sin2 θ. On the other hand, for the case of circular polarization,
ε̂ = (x̂± iŷ)/

√
2, so 1−|r̂ · ε̂|2 = (1 + cos2 θ)/2. Note that any arbitrary polarization

can be represented as a superposition of these three basis vectors.

The total radiated power is then

Prad ≡
∫
dPrad
dΩ

dΩ =

∫
r2S · r̂dΩ

=
|d̈+|2

8π2ε0c3

∫ π

0

∫ 2π

0

(
1− |r̂ · ε̂|2

)
sin θdθdφ,

=
|d̈+|2

3πε0c3
=

e2|ẍ+|2

3πε0c3
(2.11)

where the last equality is obtained using equation (2.5). This result applies to both
linearly and circularly polarized light. Also note that the radiated power is the
time-averaged power. Calculating the average work done by the complete damping
term

∫ x2

x1

mγẋ · dẋ′ =
∫ t2

t1

mγẋ(t′) · ẋ(t′)dt′ = mγ

∫ t2

t1

2|ẋ+|2dt′, (2.12)

where in the last equality we use a similar procedure presented in the section 2.3 to
calculate the dipole force. This procedure consists in dropping the terms ẋ± · ẋ± ∼
e±2iωt because the frequency is too high for the atoms. Instead, the terms of the
form ẋ± · ẋ∓ ∼ 1 are kept. These two terms are equal and, then, equivalent to
2|ẋ+|2.

Then, the average work done by radiation reaction must balance the energy emitted
into the field, giving

2mγ

∫ t2

t1

|ẋ+|2dt′ ≡
∫ t2

t1

Praddt
′ =

e2

3πε0c3

∫ t2

t1

|ẍ+|2dt′ ≈ e2ω2
0

3πε0c3

∫ t2

t1

|ẋ+|2dt′ (2.13)

where in the last equality we use x+(t) = x+
0 e
−iωt and we can make the approxima-

tion ω ≈ ω0 which implies that the atom is driven close to resonance.

Using equation (2.13), we get a classical expression for the damping coefficient

γ =
e2ω2

0

6πmε0c3
. (2.14)

Although this classical result for the spontaneous emission rate is not strictly correct,
it will help to patch our classical expressions for radiative and dipole force to create
their semi-classical counterpart.
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2.1.3 Quantum Patch: Rate-Equation Model

There is an important feature of the light–matter interaction that this classical
model misses; the harmonic oscillator (equation 2.2) can be excited to arbitrarily
high amplitudes. We need to introduce some saturation mechanism, this is done
using a simple model of the atom that includes discrete energy levels. By discretizing
the electromagnetic field the concept of photons emerges, which we can imagine as
the energy exchange currency between atoms and light.

However, our next description is not able to reproduce all the phenomena, so the
resulting rate equations constitute a sort of “semi-quantum” model of the atom
which is enough for our illustrative description.

There are three fundamental interactions between light and atoms which we describe
in the following lines. In all cases we will consider only a two-level atom with ground-
state energy E1 and excited-state energy E2. We will also assume resonant light with
frequency ω = (E2 − E1)/~.

Absorption (stimulated): This process involves the atom initially being in the ground
state. In the absorption process, a photon is destroyed and the atom is promoted to
the excited state. More generally, if there are n + 1 photons to start with in some
resonant mode, after the absorption there will be n photons in the field and the
atom will be in the excited state (top panel in figure 2.1).

Stimulated emission: This process involves the atom initially being in the excited
state, in the presence of n photons in the resonant mode. After the stimulated-
emission event, the atom is demoted to the ground state and the field is left with
n+1 photons. This emitted photon has the same phase and direction as the incident
photons. This process can be seen as a time-reversed stimulated absorption, just
with the difference that for the case of stimulated emission beginning with n = 0
photons is not possible although absorption ending with n = 0 photons is possible
(central panel in figure 2.1).

Spontaneous Emission: This process is much like stimulated emission, the atom is
demoted to the ground state and a photon is emitted, but the presence of any field is
not intrinsically necessary (it can still occur in presence of a field). Also, the phase
and direction associated with the emitted photon is random. The excited state of
the atom lasts for a characteristic natural time before transitioning to the ground
state (bottom panel in figure 2.1).

Now, considering an ensemble of two-level atoms interacting with light. Let Ni

denote the number density of atoms with energy Ei. Then the Einstein rate equation
for the excited state is

dN2

dt
= −A21N2 −B21ρ(ω)N2 +B12ρ(ω)N1 (2.15)

where ρ(ω) is the energy density of the electromagnetic field in the frequency interval
ω to ω + dω. The first term corresponds to spontaneous emission, reducing the
excited-state population even in the absence of any field. The second and third
terms are proportional to ρ(ω) and correspond to stimulated emission and absorption
respectively.
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Figure 2.1: Schematic picture for the three fundamental interactions between light
(red wavepacket) and atoms (purple dots). Stimulated absorption (top panel); stim-
ulated emission (middle panel), and spontaneous emission (bottom panel). See text
for details.

By historical reasons [49], the constant A21 is called Einstein A coefficient. Here
represents the rate at which energy is lost from the atom and we can identify A21 = γ
as the damping rate in the Lorentz atom model (in the next chapter it will be labeled
and referenced as Γ). The constants B21 and B12 are called Einstein B coefficients.

A steady-state occurs when the change in the number of excited atoms is zero
dN2/dt = 0, then the rate equation (2.15) gives

N2

N1

=
B12ρ(ω)

A21 +B21ρ(ω)
. (2.16)

This steady-state can be thought of as thermodynamic equilibrium between the
atoms and the radiation field. Then the ratio N2/N1 can be expressed using dis-
tribution of the atoms at equilibrium energy as stated by the Maxwell-Boltzmann
statistics, giving

N2

N1

=
e−E2/kBT

e−E1/kBT
= e−~ω/kBT , (2.17)

where we assume that the energy levels Ei are no degenerate. Substituting this at
equation (2.16) and solving for ρ(ω) we get

ρ(ω) =
A21

B21

1(
B21

B12
e~ω/kBT − 1

) , (2.18)

which is equivalent to the Planck law of blackbody radiation if B21 = B12 and
A21

B21
= 8π~

λ3
. This tell us that the radiation field can be expressed using the distribution
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of photons as stated by the blackbody distribution. Again, all this process is based
on thermodynamic equilibrium between the atoms and the radiation field.

Although energy generated by stimulated emission is always at the exact frequency
of the field which has stimulated it, the rate equation (2.15) refers only to excitation
at the particular optical frequency ω0 corresponding to the energy of the transition.
At frequencies around ω0 the strength of stimulated (or spontaneous) emission will
be decreased according to the so-called line shape s(ω).

The line shape s(ω) models the fact that the energy levels have some width, usually
described by a Lorentzian function of the form

s(ω) =
1

π

γ/2

(ω − ω0)2 + (γ/2)2
. (2.19)

Then the term ρ(ω) needs to be substituted by an integral over ω of the product
between ρ(ω) and s(ω), but in the case of nearly monochromatic light, s(ω) is much
broader than ρ(ω), then s(ω) varies slower over the width of ρ(ω), giving the integral

ρ(ω)→
∫ ∞

0

ρ(ω)s(ω)dω ≈ s(ω)

∫ ∞
0

ρ(ω′)dω′ = s(ω)I/c, (2.20)

where the last integral gives the total energy density of the field, which is equal to
the total intensity of the field divided by the speed of light.

Substituting this correction and the Einstein coefficients in the steady-state rate
equation (2.16) we obtain

N2

N1

=
1

A21

B12ρ(ω)
+ 1
≡ 1

8π~
λ3

c
Is(ω)

+ 1
(2.21)

where 2πc/λ = ω. We define the absorption cross-section as σ(ω) ≡ γλ2s(ω)/4
which we substitute in the steady-state rate equation 2.21 giving

N2

N1

=
1

~ωγ
σ(ω)I

+ 1
(2.22)

where conveniently we can define the saturation intensity as Isat(ω) ≡ ~ωγ
2σ(ω)

, obtain-
ing the last expression

N2

N1

=
1

2Isat(ω)
I

+ 1
. (2.23)

In the limit in which the intensity is very big, I → ∞, the populations are equal.
This points to an important effect that is missed by the Lorentz model as we dis-
cussed in the beginning of this section: the atomic saturation. Additionally, we can
observe that N2/N1 < 1 for all the intensities, then there is no population inversion
in a steady-state of two-level system, but this is another topic that we do not wish
to discuss here.

The absorption cross-section and saturation intensity (at resonance) defined in this
section will be useful later, σ0 ≡ σ(ω0) = γλ2

0s(ω0)/4 = λ2
0/2π and
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Isat ≡
~ω0γ

2σ0

. (2.24)

Note that σ0 = λ2
0/2π is an average over all possible atomic orientations, since

the blackbody distribution (2.18) assumes isotropic radiation. For atomic dipole
moments aligned with the field polarization, there is just one privileged direction
and the resonant cross section is σ0 = 3λ2

0/2π due to the coupling that would
normally be “distributed” among three orthogonal directions is concentrated into
one.

2.2 Radiation force

We will use the simple two-level atom model presented in the last subsection to
describe the radiation force in a semi-classic way. Of course, the real world is more
complex; in fact, due to the hyperfine structure, the ground state of alkali atoms is
split into two levels, and hence, the D2 transition can be seen as a Λ-type transition
(section 2.2.4).

When an atom in the ground state absorbs a photon, it experiences a linear mo-
mentum change associated to the photon momentum. Afterwards, the excited atom
decays to the ground state and emits a photon due to spontaneous or stimulated
emission. This emission results in a second linear momentum change.

As we commented in the last subsection, the emitted photon by stimulated emission
has the same phase and direction as the incident photons, contrary to the case
of spontaneous emission, where the phase and direction of the emitted photon is
random. Then, considering the repetition of many absorption and emission cycles,
we can calculate the average change in the linear moment.

Using a continuous source of light with well-defined wave vector k, the photon
absorption leads a change in the atom linear momentum of ∆p = ~k, the stimulated
emission of a photon leads a change in the atom linear momentum of ∆p = −~k.
However, the average change due to spontaneous emission 〈∆p〉 = 0, because the
emission occurs randomly along any direction (figure 2.2). Therefore, after adding
the contribution of the absorption and spontaneous emission processes which repeats
over and over, the atom acquires momentum ~k on average for each absorption-
emission process.

Thus, the rate of momentum transfer 〈∆p〉 = ~k implies a force called radiation
pressure which can be expressed as

Frad =
~k

∆t
≡ ~kRsc (2.25)

where k is the incident light wave vector, ∆t the amount of time to emit the absorbed
photon and it can be related to the photon scattering rate Rsc = 1/∆t. Although
this description of the radiation force is an oversimplification and it does not consider
several important effects, it presents the big picture of the problem [3].

After this semi-classical explanation, we return to our complete classical treatment.
The momentum of the classical field is related to the absorbed power Pabs by F =
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Figure 2.2: Schematic photon-atom interaction. The photon absorption (left panel)
leads a change in the atom linear momentum of ∆p = ~k, the stimulated emission
(central panel) of a photon leads a change in the atom linear momentum of ∆p =
−~k. However, the average change due to spontaneous emission 〈∆p〉 = 0, because
the emission occurs in all directions (right part).

dp/dt = Pabs/c. Due to energy conservation, the absorbed power has to be equal to
the radiated power Prad which we already calculated in section 2.1.2. This power
radiated by an oscillating dipole Prad is expressed by the equation (2.11).

Rewriting equation (2.11) using the explicit expression d+ = α(ω)E+
0 e
−iωt from (2.5)

and I = 2ε0c|E+|2 we find that

Prad =
ω4|α(ω)|2|E+|2

3πε0c3
=
ω4|α(ω)|2

6πε20c
4
I(r), (2.26)

using the polarizability of equation (2.7), we can write the irradiated power as

Prad =
ω4e2

6πε20c
4m

e2/m

(ω2
0 − ω2)

2
+ γ2ω2

I(r), (2.27)

where we recognize the second fraction as the Im[α(ω)] divided by a factor γω.
Substituting this we obtain

Prad =
ω3e2

6πε20c
4mγ

Im[α(ω)]I(r) =
ω3

ε0cω2
0

Im[α(ω)]I(r) (2.28)

where in the last equality we used the expression for γ from equation (2.14).

From here, the photon scattering rate Rsc can be defined as the radiated power Prad
divided by the photon energy ~ω, Rsc = Prad/~ω. Again, the physical meaning of
this quotient is related to the inverse of the amount of time to emit the absorbed
photon, Rsc = 1/∆t. Inserting this into the radiative force expression (2.25) gives

Frad =
kω2

ε0cω2
0

Im[α(ω)]I(r) (2.29)

hence, the radiative force is proportional to the light intensity and the imaginary
part of the polarizability α(ω), as we discussed at the beginning of this chapter.
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We can rewrite the expression for the radiative force in a more useful way. First, we
use again the polarizability expression from equation (2.7) to find

Frad =
kω2

ε0cω2
0

γωe2/m

(ω2
0 − ω2)

2
+ γ2ω2

I(r). (2.30)

We need to patch this result with the saturation intensity (2.24), calculated in section
2.1.3 given by

Isat ≡
~ω0γ

2σ0

=
~ω0γω

2
0

2 · 6πc2
, (2.31)

where σ0 = 3λ2
0/2π = 6πc2/ω2

0 is the resonant absorption cross section for an atomic
dipole aligned with the field polarization, which is the case because we are consid-
ering the power emitted by a dipole (2.11).

Finally, to write this radiative force in a more standard form, we divide and multiply
(2.30) by Isat

Frad =
ke2

mε0cω2
0

~ω0γω
2
0

2 · 6πc2

γω3

(ω2
0 − ω2)

2
+ γ2ω2

I(r)

Isat
, (2.32)

where the constants can be regrouped using expression (2.14) giving

Frad =
~k

2ω0

γ3ω3

(ω2
0 − ω2)

2
+ γ2ω2

I(r)

Isat
=

~k

2ω0

γ3ω3

[(ω0 + ω) ∆]2 + γ2ω2

I(r)

Isat
, (2.33)

where the last equality is obtained introducing the detuning ∆ ≡ ω − ω0. Notice
that this force is always positive in the wave vector direction.

After this, some approximations can be taken. Near to resonance ω ≈ ω0 and
ω + ω0 ≈ 2ω ≈ 2ω0, so the radiative force can be written as

Frad =
~k0(γ/2)3

∆2 + (γ/2)2

I(r)

Isat
. (2.34)

2.2.1 Laser cooling: Optical Molasses

Now let’s explore how we can use the radiation-pressure force to cool down an atomic
gas [50]. The simplest setup we can consider is an atom moving with velocity v,
exposed to identical but counter-propagating laser fields along the velocity direction
as shown in figure 2.3.

Using equation (2.34), we have that near resonance, the radiation-pressure force on
the atom due to the two fields is

Fmol = ~k(γ/2)3

(
1

∆2
1 + (γ/2)2

− 1

∆2
2 + (γ/2)2

)
I

Isat
, (2.35)

where ∆2
i are the effective detunings of the two lasers. The detunings of the two

lasers are the same in the laboratory frame, but the idea behind Doppler cooling is
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Figure 2.3: One dimension optical molasses scheme. An atom moving with veloc-
ity v, exposed to identical but counter-propagating laser fields along the velocity
direction.

to tune the lasers below the atomic resonance, so that the beam that opposes the
atomic velocity is Doppler shifted into resonance, thus tending to stop the atom.

With the pictured setup of figure 2.3, the frequency of laser 1 is Doppler shifted (red
shifted) by −kv, while the frequency of laser 2 is Doppler shifted (blue shifted) by
+kv. Then the corrected detunings are given by

∆1 = ∆− kv
∆2 = ∆ + kv (2.36)

where ∆ = ω − ω0 is the detuning in the laboratory frame. Then the force is

Fmol = ~k(γ/2)3

(
1

(∆− kv)2 + (γ/2)2
− 1

(∆ + kv)2 + (γ/2)2

)
I

Isat
. (2.37)

For small velocity kv � |∆|, γ, we can neglect terms proportional to (kv)2, then

Fmol ≈ ~k(γ/2)3

(
1

∆2 − 2∆kv + (γ/2)2
− 1

∆2 + 2∆kv + (γ/2)2

)
I

Isat
,

≈ ~k(γ/2)3

(
2 · 2∆kv

[∆2 + (γ/2)2]2

)
I

Isat
,

≈ ~k2γ3

2

∆

[∆2 + (γ/2)2]2
I

Isat
v. (2.38)

Doppler cooling is achieved by tuning the lasers below the atomic resonance, ∆ < 0,
so the force in equation (2.38) becomes negative, opposing to the velocity direction
of the atom. So, the radiative force on atoms of two counter-propagating beams
each with equal intensity I, near resonance at ∆ < 0 can be written as F = −Πv
with

Π =
~k2γ3

2

|∆|
[∆2 + (γ/2)2]2

I

Isat
. (2.39)

This correspond to a viscous force, which is why this configuration is called “optical
molasses”.
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For implementing a three dimensional optical molasses scheme, we simply combine
three of the above one-dimensional setups, one along each axis as shown in figure
2.4.

Figure 2.4: Three dimension optical molasses setup scheme. This setup combine
three one-dimensional molasses, one along each axis.

Then, the radiative force vector on atoms of three pairs of counter-propagating
beams each with equal intensity I, for small velocity kv � |∆|, γ near resonance at
∆ < 0 can be written as,

Fmol = −Πv. (2.40)

2.2.2 Doppler Cooling limit

From the analysis above, we might think that the optical molasses would dampen the
speed of the atoms and stop them completely. This, of course, is not possible. Up to
now, we have only considered the average cooling force. There are also fluctuations
of the cooling force, which become relevant as the temperature decreases. These
fluctuation eventually become a source of heating, which lead to a lower temperature
limit that can be achieved. This limit is known as Doppler temperature limit [51].
We will now derive the Doppler limit for the optical molasses.

Looking at the variance of the velocity distribution

d

dt
〈v2〉 = 2〈v · dv

dt
〉 =

2

m
〈v · dp

dt
〉 =

2

m
〈v · Fmol〉 = −2Π

m
〈v2〉 (2.41)

where the angle brackets denote an ensemble average and we use the force expression
from equation(2.40) for small velocities. According to this differential equation, the
velocity damps to zero, therefore this rate is associated to cooling.

Now we heuristically include force fluctuations, since we don’t have the complete
description because we are working with a semi-classical model. As we discussed at
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the beginning of this section (2.2), when an atom absorbs a photon, it receives a
momentum “kick” ~k, followed by a spontaneous emission process which leads to a
second momentum “kick” with magnitude ~k but at a random direction. However,
for 3D optical molasses, the absorption process can occur with the same probability
along the direction of any of the six laser beams, which means that the direction of
the first momentum kick ~k is also random.

Therefore, a scattering event generates two momenta kicks, each of them increases
the atom velocity by ~k/m. Then 〈v2〉 has a total change of 2~2k2/m2 at each
scattering event. The rate at which this scattering event occurs is nothing else than
the scattering rate Rsc defined in (2.29). Using the Rsc definition and the radiative
force near resonance (2.34) we obtain

Rsc =
(γ/2)3

∆2 + (γ/2)2

I

Isat
(2.42)

for each laser beam. As we have six beams, the 〈v2〉 increases at the total rate

12Rsc
~2k2

m2
, (2.43)

which is called the “heating rate” because, in contrast to the cooling rate (2.41) this
term is always positive and, consequently, it increments the kinetic energy of the
atoms.

The heating rate can be included by hand in equation (2.41), so we obtain

d

dt
〈v2〉 = −2Π

m
〈v2〉+ 12Rsc

~2k2

m2
, (2.44)

where we can clearly see the competition between the cooling mechanism, corre-
sponding to the first term, and the heating rate, depicted in the second term. A
steady state is reached when d

dt
〈v2〉 = 0, where the heating and cooling rates equili-

brate, resulting in

〈v2〉 =
3~
2m

∆2 + (γ/2)2

|∆|
. (2.45)

The corresponding temperature to this equilibrium kinetic can be obtained by the
expression m〈v2〉/2 = 3kBT/2. In this way, we obtain the minimal temperature
reached by the optical molasses at detuning ∆

kBT =
~
2

∆2 + (γ/2)2

|∆|
, (2.46)

which has a minimum at ∆ = −γ/2, corresponding to the minimum expected tem-
perature for Doppler cooling, the Doppler temperature TD

kBTD =
~γ
2
. (2.47)
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Using the D2 line of 6Li, where γ = 2π × 5.87 MHz, the Doppler temperature is
TD = 140µK. This temperature is still very high to achieve quantum degeneracy.
We can see this through the phase space density (PSD) defined in equation 1.8 with
the density at the experiment n in the molasses (section 3.2.1) obtaining PSD=
2 · 10−7 � 1.

For this reason, additional cooling techniques must be implemented. In our experi-
ment we employ the sub-Doppler gray molasses cooling technique (see section 2.2.5)
and the evaporative cooling technique (see section 2.3.4), which make possible to
increase the phase space density of the gas until the quantum regime is reached.

2.2.3 Magneto-Optical Trap

Optical molasses cools the atoms by means of a viscous force, however, this force
does not spatially confine the sample. To confine the atoms, it is necessary to add an
extra magnetic field to the three-dimensional optical molasses. This arrangement
is called “Magneto-Optical Trap” (MOT), it was theoretically proposed by Jean
Dalibard in 1986 and experimentally implemented by David E. Pritchard in 1987
[52].

It is created by adding to the 3D optical molasses a magnetic field gradient created
by two opposed current loops in “anti-Helmholtz” configuration as shown in figure
2.5, so the magnetic field is zero in the center of the trap and its intensity increases
linearly along any radial direction. Dalibard’s proposal also modifies the polarization
of the molasses beam, by using opposite circularly polarized light in each set of
counter-propagating beams (the so-called σ+ − σ− configuration), instead of the
linearly polarized light that we considered in our previous discussion.

To understand how this trap works, we consider first the 1D case of two counter-
propagating red-detuned beams in presence of a magnetic field as shown in figure
2.6. The two counter-propagating beams have opposite circular polarization σ+ and
σ−, and the magnetic field is linear along the axis B(0, 0, z) = bzẑ and it is null at
the center of the trap. Here b is the magnetic gradient along the z-direction.

The presence of a magnetic field introduces a shift in the energy levels of the atom
due to the linear Zeeman effect. This effect occurs due to the coupling of the atomic
magnetic moment µ 6= 0 to the magnetic field. The Zeeman shift can be expressed
as ∆E = −µ · B = −mjgjµBB(z) where gj are the Landé factors; j is the total
angular momentum of the atom, mj is its projection along the quantization axis
and can take the values −j,−j + 1, ..., j − 1, j.

This Zeeman shift is shown in figure 2.6 by the dotted lines. The linear behavior is
due to the magnetic field, which is also linear, Bz(z) = bz, as we already stated.

The energy separation between two atomic levels is then ∆Ej→j′ = −(mj′gj′ −
mjgj)µBB(z) = −δµB(z), which introduces a new contribution to the detuning
that depends of the position z

∆B(z) =
−δµB(z)

~
=
−δµbz

~
, (2.48)
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Figure 2.5: The MOT setup scheme. The setup combine a 3D optical molasses
with a linear magnetic field (whose zero is at the center of the trap) created by two
opposed current loops. In this 3D optical molasses, each counter-propagating beam
uses circularly polarized light σ+ and σ− respectively, instead linearly polarized.

Figure 2.6: The operating principle of the one dimensional MOT for two-level
atom, transition J = 0 → J = 1. The scheme represents the Zeeman shift
∆E = −mjgjµBB(z) by the dotted lines. The lineal behavior is due to the magnetic
field, which is linear Bz(z) = bz. The red-detuned circularly polarized beams (σ+

and σ−) are represented by the red wavy arrows.
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which has to be considered when calculating the radiation pressure force. The
radiation pressure force in the 1D molasses equation (2.35) is the same except for
the corrected detunings of the form

∆1 = ∆− kv −∆B(z)

∆2 = ∆ + kv + ∆B(z) (2.49)

where ∆ = ω−ω0 is the detuning in the laboratory frame, kv the Doppler shift and
∆B(z) the Zeeman shift. For small velocity and small Zeeman shift kv � |∆|, γ and
∆B(z) � |∆|, γ, we can neglect terms of the order (kv)2, ∆B(z)2 and kv · ∆B(z);
then, following equation (2.38) the force that the atoms experience in the MOT is

FMOT ≈
~k2γ3

2

∆

[∆2 + (γ/2)2]2
I

Isat

(
kv +

δµbz

~

)
. (2.50)

When ∆ < 0, this force can be written as FMOT = −Πv−Pz with Π as in equation
(2.39) and P = δµbz

k~ Π. Similarly to the case of the optical molasses, Π corresponds
to the coefficient of the viscous term of the force, which is responsible for cooling
the atoms, and P corresponds to the coefficient of the restorative term, that confines
the atoms near the center of the trap.

2.2.4 Repumping

Up to now, we have considered the atom as a two-level system. However, to correctly
implement the laser cooling techniques, we need to consider the hyperfine structure
of the atoms. As mentioned in section 2.2, the ground state of alkali atoms (such
as lithium) is split into two different levels, which we denote as |1〉 and |2〉. In this
way, the D2 transition can be better approximated as a Λ-type transition with an
excited state that we denote as |3〉.

Now, if we set the cooling transition between levels |1〉 and |3〉, it might happen that
the excited state decays into the state |2〉, and such atom will no longer interact
with the cooling light, escaping in this way from the cooling cycle.

This problem can be solved by introducing a second light frequency, corresponding
to the transition between the states |2〉 and |3〉 as shown in figure 2.7. The addition
of this second frequency simply guarantees that the atoms are kept in the cooling
cycle. These two frequencies are known as the cooling frequency, for the main
frequency, and the repumper frequency, for which it “repumps” the atoms back into
the cooling cycle. The light is red detuned by ∆ = ω − ω0, necessary for achieving
Doppler cooling.

In the experiment, we need the repumper frequency to correctly implement the 3D
optical molasses and the magneto-optical trap.

2.2.5 sub-Doppler cooling

All the cooling mechanisms that we have considered up to this point are Doppler
limited, and for the case of 6Li, the lowest achievable temperature is TD ≈ 140µK.
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Figure 2.7: Simplified scheme of D2 Λ transition presented in figure 3.4. The first |1〉
and second |2〉 ground states correspond to the lowest energy hyperfine states of 6Li,
22S1/2(F = 3/2) and 22S1/2(F = 1/2) respectively. The excited state |3〉 correspond
to the level 22P3/2 of D2 transition which cannot be resolved into hyperfine states.
The ∆ = ω−ω0 correspond to the detuning to the red of the cooling and repumper
frequencies.

Although the first experiments applying optical molasses seemed to be in agreement
with this limit, in 1988 the group of W. D. Phillips [53] unexpectedly observed sub-
Doppler temperatures in a dilute gas of 40Na. For this species, the Doppler limit is
of the order of 240 µK, however, in their experiment a much lower temperature of
43 ± 20 µK was attained.

In 1989, J. Dalibard and C. Cohen-Tannoudji [54] theoretically showed the existence
of an additional cooling mechanism originated by the existence of polarization gradi-
ents in the optical molasses, this mechanism is known as the Sisyphus effect. Indeed,
the Sisyphus effect is able to explain the results obtained by Phillips et.al. [53]. For
many atomic species, Sisyphus cooling applied on the D2 transition is widely used
as standard sub-Doppler cooling technique.

However, for this technique to work properly, it is necessary that all the energy
levels involved in the cooling cycle are well resolved. This is not the case with the
D2 transition of 6Li, where the hyperfine separation of the levels of the excited state
is smaller than the natural linewidth of the transition (such separation is of the
order of 4.5 MHz, while the natural linewidth of the transition is of the order of 5.8
MHz). For this reason, standard Sisyphus cooling techniques cannot be applied in
our experiment.

Instead, we employ a different sub-Doppler technique known as “gray molasses” [55],
which allows to reach in an efficient way temperatures as low as T ≈ 40µK. This
cooling scheme is based on the D1 transition and also employs a Λ-type three-level
transition, as shown in figure 2.8.

The gray molasses combines two physical process, Sisyphus cooling and velocity-
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Figure 2.8: Simplified scheme of D1 Λ transition presented in figure 3.4. The first |1〉
and second |2〉 ground states correspond to the lowest energy hyperfine states of 6Li,
22S1/2(F = 3/2) and 22S1/2(F = 1/2) respectively. The excited state |3〉 corresponds
to the level 22P1/2(F’ = 3/2) of D1 transition. The ∆ = ω − ω0 corresponds to the
detuning (to the blue, in this case). The labels ”cooling” and ”repumper” are
inherited from the D2 notation.

selective coherent population trapping (VSCPT) [56]. These will be explained below.

Gray molasses cooling is based on the fact that in a three-level transition, it is
possible to create dressed states as result of special quantum superpositions between
the two ground state levels |1〉 and |2〉. In our case, the dressed states of interest are
the so-called dark |ΨD〉 and bright |ΨB〉 states. In presence of light, the bright state
|ΨB〉 experience a energy shift which depends of the light intensity and polarization.
On the other hand, the dark state |ΨD〉 is not sensible to light. That’s why they are
called dark and bright states. Exploiting this difference is the main idea behind the
gray molasses cooling mechanism.

Figure 2.9 shows a simplified scheme of this technique. Using counter-propagating
beams with opposite circular polarization (configuration σ+ − σ− which we already
have thanks to the MOT configuration), we can create a spatial polarization gra-
dient. Consequently, the light shift experienced by the bright states is spatially
modulated [54]. Atoms in the bright state moving along the polarization gradient
have to convert their kinetic energy into potential energy in order to climb up the
potential hills (left part of figure 2.9). On top of the hills, where the light shift is
maximal, it is most probable for the atoms to absorb a photon and populate the
excited state.

Once an atom is in the excited state, it has two decay possibilities. On the one
hand, the atom might decay into the bright state. In this case, the atoms simply
restarts the process, moving along the polarization gradient without any change in its
kinetic energy. On the other hand, if the atom decays in the dark state, it will leave
the cooling cycle but it will also have lost part of its kinetic energy due to having
previously reached the maximum potential energy in the polarization gradient. Now,
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Figure 2.9: One dimension gray molasses cooling schema. There are three states,
excited |3〉, bright |ΨB〉 and dark |ΨD〉. Atoms in bright state have to convert their
kinetic energy into potential energy, in order to climb up the potential hills. In the
top of the hill, photon absorption is more probable. After photon absorption, the
atom reach the excited state, which can decay into two options. If atom decays
into bright state, the process can restart, calling Sisyphus cooling to this process. If
the atom decays into dark state, it can transferred to the bright state using atom
velocity due to VSCPT. This return the atom to the cooling cycle.

to keep this process going, the atom in the dark state has to transition back to
the bright state, since this transition cannot occur through absorption of light, the
transference is achieved using atomic motion (as illustrated in the right part of figure
2.9). In this way, the atom restarts a new cooling cycle but with less initial kinetic
energy, in a similar fashion as the standard Sisyphus cooling mechanism.

Now, the cooling mechanism of gray molasses is so efficient because the probability of
this last transition from the dark to the bright state turns out to be proportional to
the square of the speed of the atom, in this way, the atom will remain permanently in
the dark state (abandoning consequently the transition cycles) only when its speed
is very small, leading to samples with very low temperature. The latter process is
called velocity-selective coherent population trapping (VSCPT) [56].

In other words, after many cooling cycles, the atoms will accumulate in the dark
state with a velocity close to zero. At this point, the probability of transition to the
bright state vanishes. Although VSCPT does not have a theoretical limit on the
minimum speed that can be reached, in practice, the experimental imperfections of
the polarization gradient fields will determine a lower limit on temperature.

The description here presented can be extended to the 3D case. In our experiment,
gray molasses is a very important cooling stage since allows to decrease the temper-
ature way below the Doppler limit, reaching values as low as T = 40 µK. As will
be shown in section 3.2.1, after the gray molasses process the PSD of our sample
(equation 1.8) presents an important increase to the order of 1× 10−6. At his point,
the sample is ready to be transferred into a conservative optical dipole trap where
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the very last cooling stage, the evaporative cooling technique, can be applied.

2.3 Dipole force

As discussed in the previous section, after the Doppler and sub-Doppler cooling
mechanisms, the temperature of the sample is of the order of tens of microkelvin,
which is still few orders of magnitude above the quantum degeneracy temperature,
of the order of hundreds of nanokelvin.

In order to implement the last cooling stage, it is necessary to transfer the atoms
into a conservative potential where there is no energy exchange between the atoms
and the electromagnetic field. This is achieved by using light very far-detuned from
atomic resonances, so the atoms will not absorb the light but still interact with its
electric field. This interaction is used to create such a conservative potential.

The associated mechanical force to this conservative potential is known as optical
dipole force and we devote this section to its description. In particular, at the end
of this section, we explain how the last cooling stage is implemented by dynamically
reducing the depth of the conservative potential, the so-called evaporative cooling
technique.

When a external electromagnetic field interacts with an atom, its electric field in-
duces an electric dipole moment in the atom given by d = αE as in (2.6). The
potential energy of the induced dipole can be written as

Udip = −1

2
d · E (2.51)

where the 1/2 factor appears because we are considering an induced electric dipole
rather than a permanent one, so the potential energy can be expressed as Udip =

−
∫ E

0
d · dE′ = −

∫ E
0
αE′ · dE′ = −1

2
αE2. Writing the potential in terms of the

notation employed in (2.1) we get,

Udip = −1

2

(
d+ + d−

)
·
(
E+ + E−

)
, (2.52)

we know that E± ∼ e±iωt and d± ∼ e±iωt, so in Eq. (2.52) there are terms of the
form

d± · E± ∼ e±2iωt, (2.53)

which rotate at twice the optical frequency (terahertz), which is too fast for the
atoms to mechanically respond. So we will neglect those terms and keep terms of
the form

d± · E∓ ∼ 1, (2.54)

in consequence, the potential energy is rewritten as
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Udip = −1

2
d+ · E− − 1

2
d− · E+

= −1

2

[
α(ω)E+

]
· E− − 1

2

[
α∗(ω)E−

]
· E+

= −Re [α(ω)] |E+|2. (2.55)

Using that the intensity of the electric field in vacuum is I = ε0c
2
|E0|2 = 2ε0c|E+|2

and considering that E+(r) is a function that slowly varies spatially, the last equation
in terms of the intensity is

Udip = − 1

2ε0c
Re [α(ω)] I(r). (2.56)

So, the spatial dependence of the potential is determined by the light intensity I(r).
The corresponding force is given by the gradient of the potential energy,

Fdip = −∇Udip =
1

2ε0c
Re [α(ω)]∇I(r). (2.57)

hence, the dipole force depends on the gradient of the intensity and on the real part
of polarizability α(ω), as we discussed at the beginning of this chapter.

Returning to the discussion of the dipole potential at equation (2.56), we can sub-
stitute the expression for the polarizability from equation (2.7) and write the dipole
potential as

Udip =
−e2

2mε0c

ω2
0 − ω2

(ω2
0 − ω2)

2
+ γ2ω2

I(r). (2.58)

Using again the detuning ∆ ≡ ω − ω0, we can write the dipole potential as

Udip =
e2

2mε0c

(ω0 + ω) ∆

[(ω0 + ω) ∆]2 + γ2ω2
I(r). (2.59)

where the sign of the dipole potential is determined only by the detuning of the
field from the atomic resonance, because everything in this expression is necessarily
positive excepting the detuning ∆ in the numerator.

In the case of positive detuning (ω > ω0) the dipole potential is positive Udip > 0
and we say that the potential is blue-detuned. On the other hand, in the case of
negative detuning (ω < ω0) the dipole potential is negative Udip < 0 and we say that
the potential is red-detuned. Therefore, a tightly focused blue-detuned Gaussian
beam will repel atoms, forming a potential barrier, while a red-detuned beam will
attract atoms, forming a potential well.

It is convenient to express this result in terms of the saturation intensity from
equation (2.24),

Isat ≡
~ω0γ

2σ0

=
~ω0γω

2
0

2 · 6πc2
, (2.60)
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where σ0 = 3λ2
0/2π = 6πc2/ω2

0 is the resonant absorption cross section for an atomic
dipole moment aligned with the field polarization, which is the case because we are
working with an induced dipole.

Finally, to write this dipole potential in more standard form, we divide and multiply
(2.59) by Isat

Udip =
~ω0γω

2
0

2 · 6πc2

e2

2mε0c

(ω0 + ω) ∆

[(ω0 + ω) ∆]2 + γ2ω2

I(r)

Isat
. (2.61)

where the constants can be regrouped using γ from expression (2.14) resulting in

Udip =
~ω0γ

2

4

(ω0 + ω) ∆

[(ω0 + ω) ∆]2 + γ2ω2

I(r)

Isat
=

~ω0γ
2

4

1/ (ω0 + ω) ∆

1 + γ2ω2/ [(ω0 + ω) ∆]2
I(r)

Isat
,

(2.62)
where in the last equality we rearrange the term to make clear that we are considering
that the light is very far away from resonance (|∆| � γ). For this reason, we can
neglect terms of order γ2/∆2, giving

Udip =
~ω0γ

2

4

1

(ω0 + ω) ∆

I(r)

Isat

=
~γ2

8

(
1

∆
− 1

ω0 + ω

)
I(r)

Isat
. (2.63)

Additionally if |∆| � ω0+ω, we can make the so-called rotating-wave approximation
and neglect the second counter-rotating term, obtaining a simple formula

Udip =
~γ2

8∆

I(r)

Isat
(2.64)

and consequently,

Fdip = −~γ2

8∆

∇I(r)

Isat
. (2.65)

As we can see, the dipole force is directly proportional to the gradient of the intensity
of the light. Broadly speaking, if we focus a red-detuned laser beam using a lens,
the focused light is able to create an atom trapping force called optical dipole trap
(ODT) [57]. This kind of traps are also known as “far-off resonance trap” (FORT),
or as “optical tweezers”.

2.3.1 Scaling; Radiative vs dipole force in the ODT

As we concluded in last section, the ODT is created by a focused, red-detuned laser
beam. But as we discussed in subsection 2.2.2, a laser beam has an associated
heating rate. Therefore, it is reasonable to think that as the atoms scatter the
photons from the ODT, they also heat up until they escape from the trap. This
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effect is actually substantially suppressed by the fact that the light is very far away
from resonance (|∆| � γ).

To show this, let us consider the the scaling between the scattering rate (2.42) and
the dipole potential (2.64) associated to the radiative and dipole force, respectively,
when the detuning of the trap is very big |∆| � γ.

The dipole potential at |∆| � γ correspond to (2.64). We use the scattering rate
because it is directly related to the heating of the atoms due to the random nature
of photon absorption-emission as we discussed in subsection 2.2.2. Then, using the
equation (2.42) we obtain

Rsc =
(γ/2)3

∆2 + (γ/2)2

I(r)

Isat
=

(γ/2)3/∆2

1 + (γ/2)2/∆2

I(r)

Isat
, (2.66)

where in the last equality we rearrange the terms to took easily the |∆| � γ ap-
proximation. Then, taking the limit in which (γ/∆)2 � 1 we obtain

Rsc =
γ3

8∆2

I(r)

Isat
. (2.67)

Then the scattering rate and dipole potential scale as

Rsc ∝
I

∆2
; Udip ∝

I

∆
(2.68)

so the scattering rate decreases much faster than the potential depth as the detuning
∆ increases, these are important considerations in the design of an optical dipole
trap. For a given potential depth, the scattering rate (heating) can be made very
small by making the detuning ∆ large. The resulting decrease in trap depth is
compensated by increasing the intensity of the ODT laser beam.

For example, in our experimental setup, the laser that generates the ODT has a
wavelength of 1070nm, while the D-line wavelength for 6Li is of the order of 671 nm.
This translates into a detuning of ∆ ≈ 0.6ω0. The focused infrared laser beam for
our ODT has a beam waist of 50 µm (1/e2 radius). To transfer the atoms from the
sub-Doopler cooling stage, a trap depth of the order of 1 mK is necessary, for which
the power of the ODT laser must be around 140 W.

Despite this incredibly high intensity, because the laser is far from resonance, the
ODT has a small heating rate Rsc and therefore a long lifetime, on the order of
several seconds.

2.3.2 Harmonic approximation

As demonstrated in section 2.3, the dipole force is directly proportional to the gradi-
ent of the intensity of the light as presented in equation (2.65), then the atoms tend
to remain in the focus of a red-detuned laser beam (ODT). The coldest atoms tend
to be at the bottom of the dipole potential (2.64). In this subsection we show how,
at very low temperatures, this trapping potential is nearly harmonic, the so-called
physicists “hobby-horse” potential.
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First, we consider the intensity distribution of a focused circular gaussian beam. By
“circular” we mean that the beam has radial symmetry. The propagation direc-
tion correspond to the x-direction at the laboratory frame (where the z-direction
corresponds to the direction of gravity).

Figure 2.10: Intensity profile of a gaussian beam. At left, the intensity profile
(equation 2.69) in a transverse plane at the focus. I0 is the intensity at the focus,
therefore 2P

πw2
0
. Here the 1/e2 radius definition is marked by a black arrow, which

coincides with beam waist w0 as the transverse plane is at the focus. At the right,
gaussian beam radius w(x) (equation 2.70) as a function of the distance x along the
beam. The beam waist w0 and Rayleigh range xR are marked by black arrows.

Then, considering that the focus of the beam is at the origin, the intensity of the
gaussian beam is given by

I(y, z, x) =
2P

πw2(x)
e−2(y2+z2)/w2(x) (2.69)

where P is the power of the laser beam and w(x) is the radius of the beam at position
x along the propagation. The radius at position x is defined as the distance from
the x-axis to the position where the transverse intensity profile has dropped by a
1/e2 factor. The radius w(x) has a functional form given by

w(x) = w0

√
1 +

(
x

xR

)2

, (2.70)

where w0 is the beam waist and xR the Rayleigh length. The beam waist ω0 is the
radius of the beam at the focus position (i.e. at x = 0) and corresponds to the
minimum value of ω(x). The Rayleigh length xR = πw2

0/λ is the length where the
radius of the beam increases by a factor of

√
2 respect the beam waist w0 and give us

the depth of the focus along the beam direction. If the beam is produced by focusing
a collimated beam with a lens, R = w(f) ≈ λf/πw0 is a useful approximation of
equation 2.70 which give us an expression to relate the waist, the focal length f and
the radius of the collimated beam R.

We need to approximate the intensity distribution from Eq. (2.69) around the focus
(y, z, x) = (0, 0, 0)through a Taylor series to obtain a polynomial approximation.
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Here we will not present the detailed calculation, but we outline the most important
steps.

First, we notice that the first order terms (three of them, one for each spatial vari-
able) are zero at focus. This is because at the beam focus the intensity reaches a
maximum value, so the first-order partial derivatives (related to the first order terms)
at focus are zero. Therefore, we need to extend the Taylor series approximation to
second order terms.

The second order terms are associated to three second-order partial derivatives and
six second-order mixed derivatives. The second-order mixed derivatives vanish at
focus, while the second-order partial derivatives at focus give 1

2
I(0, 0, 0)(−4/w2

0) for
the y, z−coordinates and 1

2
I(0, 0, 0)(−2/x2

R) for the x−coordinate.

Substituting this second order Taylor series approximation into equation (2.65), the
dipole potential can be written as

Udip(y, z, x) ≈ ~γ2

8∆Isat

2P

πw2
0

(
1− 2

y2 + z2

w2
0

− x2

x2
R

)
(2.71)

which has the form of a harmonic potential U = U0 + 1
2
m(ω2

yy
2 + ω2

zz
2 + ω2

xx
2),

similar to equation (1.1). The characteristic properties of a harmonic trap are the
trap depth U0 and the trap frequencies ωi. We will discuss in detail these quantities
in the next chapter.

If we compare the harmonic potential with equation (2.71), we find an expression
for the trap depth

U0 =
~γ2

8∆Isat

2P

πw2
0

, (2.72)

and for the trap frequencies

ωr ≡ ωy = ωz =

√
4U0

mw2
0

and ωx =

√
2U0

mx2
R

, (2.73)

showing that the radial and axial frequencies are inversely proportional to the
beam waist and Rayleigh length, respectively. Another important quantity, that
parametrizes the confinement of the trap, is the geometric mean of the trap fre-
quencies, ω̄ = 3

√
ωxωyωz.

In our experiment, the ODT laser has a wavelength of 1070 nm and a beam waist
of 50 µm (1/e2 radius),in contrast to the much larger Rayleigh length of 7.34 mm.
Since the frequencies are inversely proportional to the trap size, this trap provides a
very tight confinement on the radial direction of the beam, in contrast to the axial
direction where the confinement is really weak.

The ODT beam power at the end of the evaporative cooling is of the order of 40
mW (see section 2.3.4). At this point, the radial and axial frequencies of the trap
are ωr = 2π × 160 Hz and ωx = 2π × 0.94 Hz respectively, which correspond to an
extremely elongated trap (aspect ratio of the order 1:160). It is desirable to have
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extra confinement along the axial direction. As we explain in the following section,
we achieve that using an external magnetic field.

2.3.3 Hybrid trap

In order to increase the axial confinement, we add to the optical potential a magnetic
curvature that provides a better confinement along the axial direction. To do so,
we employ our Feshbach coils, which we set slightly off the Helmholtz configuration
to generate a little curvature. Remember that the Feshbach resonance of 6Li is very
broad, in consequence, this curvature is enough to generate a good confinement
along the axial direction but still very small to produce any noticeable anisotropy
in the value of the scattering length (see section 3.1.2). In this way, the created
magnetic potential has the shape of a saddle-point which we approximate as

Umag(y, z, x) ≈ U0mag +
m

2

(
ω2
xmag

x2 − ω2
rmag

r2
)
, (2.74)

where the trap frequencies are determined by the curvature of the field component

along the corresponding direction; then ω2
xmag

= µ
m
∂2B
∂x2

∣∣∣
0

and ω2
rmag

= µ
m
∂2B
∂r2

∣∣∣
0
, being

m the mass of the 6Li atom and µ the magnetic moment of the trapped state which,
in general for the ground state of alkali atoms, is of the order of the Bohr magneton,
µ ≈ µB. Note from Eq. (2.74) that along the radial direction we have an “anti-
curvature” which will tend to deconfine the atoms along that direction. This does
not represent a problem because the radial confinement from the ODT is much
stronger. The total frequencies of our hybrid trap will be given by

ωr =
√
ω2
rODT

− ω2
rmag

and ωx =
√
ω2
xODT

+ ω2
xmag

. (2.75)

In our experiment, once the quantum sample is produced, we have that the ra-
dial optical confinement is much larger than the magnetic one (ωr ≈ ωrODT

), and
vice-versa, along the axial direction the confinement is dominated by the magnetic
component (ωx ≈ ωxODT

).

Using the experimental parameters presented in section 3.1.2, the generated axial
curvature is ∂2B

∂x2
|0 =6.2 G/cm2, which translates into a total axial frequency of

ωx ≈ 2π× 11 Hz. In this way we obtain a cigar-shaped quantum sample whose
aspect ratio is 1:15, which is appropriate for our experiments (figure 2.11).

An important observation is that at low power, the radial confinement mainly de-
pends of the light power P , in contrast to the axial confinement which remains
almost constant due to the static value of the magnetic curvature ∂2B

∂x2
|0.

For simplicity, from this point on, we will use the term “ODT” to refer to this hybrid
trap.

2.3.4 Evaporative cooling

Evaporative cooling is a mechanism that occurs in many cooling processes in nature.
For example, it is the operating principle behind sweat, perspiration from plants and
even the reason why a cup of coffee cools down when we blow on it. It holds a special
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Figure 2.11: Hybrid trap potential surface with lateral projections. In purple, the
cigar-shaped hybrid trap whose aspect ratio is 1:15. The lateral projections of the
trap are related with the absorption images which we take for the study of the
quantum sample.
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place in the field of atomic physics. Indeed, in the context of trapped atomic gases, it
was essential for the first realization of Bose-Einstein condensation in 1995 [7, 8, 9],
and it is still the primary method for producing quantum degenerate gases [58].
After being submitted into the Doppler and sub-Doppler cooling stages, the gas is
transferred into the ODT, where evaporative cooling can be applied.

The central idea of evaporative cooling is the selective removal of the most energetic
atoms from the sample, in such a way that the sample rethermalizes at a lower
temperature. This is illustrated in figure 2.12.

In a more quantitative way, we define a cutting energy εc = ηkBT , such that the
particles with energy higher leave the sample. This particles correspond to the high
energy tail of the Maxwell-Boltzmann distribution, and therefore the “evaporation”
of these particles reduces the average energy of the remaining atoms. The gas
rethermalizes by elastic interatomic collisions to a new equilibrium state with lower
temperature.

Figure 2.12: Operating principle of evaporative cooling. On the left panel, the
red function is the Maxwell-Boltzmann distribution for speed at temperature T1.
The center panel illustrates the selective removal of particles from the sample with
energies higher than the cutting energy (filled orange area). This reduces the average
energy of the remaining atoms, and after rethermalization the system reach to a new
equilibrium state with lower temperature T2, represented by the blue function on
the right panel.

In the case of a trapped thermal gas, the cutting energy can be associated to the
trap depth U0. If we reduce the trap depth to the cutting energy U0 = ηkBT , the
particles with energy higher than U0 leave the trap.

We define a parameter to quantify the efficiency of the evaporative cooling process
as

% =
Ṫ /T

Ṅ/N
, (2.76)

which expresses the temperature decrease per particle lost.

Then, analyzing the kinetics of the evaporative process, following the reference [59],
for the case of 3D harmonic trap in the limit of a high cutting parameter η � 1,
the evaporation loss rate is giving by

Ṅ = −Γel(η − 4)e−ηN, (2.77)
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where Γel is the elastic collision rate. The factor e−η comes from the Maxwell-
Boltzmann distribution. This equation has an exponential solution with an charac-
teristic evaporation time proportional to 1/Γelηe

−η.

Under the same hypotheses as evaporation loss rate, following the reference [59], the
internal energy of the gas has a rate change

Ė =

(
U0 +

η − 5

η − 4
kBT

)
Ṅ = (η + κ) kBTṄ, (2.78)

and using the equation of state for an ideal gas in a harmonic trap E = 3NkBT to
connect the internal energy dynamics to temperature, we find that

Ṫ =
Ė

3kBN
− T Ṅ

N
= (η + κ− 3)

Ṅ

N

T

3
. (2.79)

Using equation (2.79), we find that evaporative cooling efficiency is

% =
η + κ

3
− 1. (2.80)

This dimensionless quantity % is the ratio between the average energy of an escaping
atom (η + κ) kBT (eq. 2.78) and average energy of an ideal gas in a harmonic trap
3kBT (subtracting one at the end). This characterize how much more than the
average energy is removed by the evaporating atoms.

These considerations show that in principle there is no limit for the efficiency of
evaporative cooling.

For example, if η is chosen to be extremely large, one just has to wait for the event
that one particle has all the energy of the system. Evaporating a single particle then
cools the whole system to zero temperature.

Such evaporation would be the most efficient cooling process possible but, unfortu-
nately, this cooling strategy would take an almost infinite amount of time. This due
to the exponential factor e−η in the characteristic evaporation time 1/Γelηe

−η.

Then evaporation efficiency % and evaporation time can not be optimized individu-
ally for a fixed value of η.

Therefore, we have not other alternative that introduce time as a parameter and
dynamically reduce the value of trap depth U0(t). This process is referred as “forced
evaporative cooling”, and it is a trade-off between efficiency and cooling speed.

Forced evaporative cooling

The forced evaporative cooling, also called runaway evaporation [58], consist in dy-
namically reduce the value of the trap depth U0(t). This results in a time-dependent
cutting parameter η(t) = U0(t)/kBT (t). The situation we keep in mind is forced
evaporation at a constant η parameter, i.e. the trap depth U0(t) is lowered in pro-
portion to the decreasing temperature T (t). Constant η ensures that the energy
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distribution is only rescaled during the cooling and does not change its shape. This
assumption is reasonably well fulfilled in experiments.

Therefore, schematically, we repeat the process described by figure 2.12, with the
new cutting energy εc = ηkBT2 which is proportional to the new temperature T2.
This process is progressively repeated until quantum degeneracy is achieved.

As the equations of the dynamic evaporation become really complex, we going to
keep in mind only two parameters, the elastic collision rate Γel and phase-space
density (PSD).

Elastic collision rate

In the equation (2.77), we expressly omitted to say that the peak elastic collision
rate in the harmonic trapped gas Γel is

Γel = n0σv̄ ∝ Nω̄3/T, (2.81)

where n0 = N(mω̄2/2πkBT )3/2 is the peak density of a classical gas in a harmonic
trap, σ the elastic scattering cross section and v̄ =

√
8kBT/πm the mean particle

speed.

To achieve sustained evaporation is necessary to maintain or increase the elastic
collision rate. Note that as the temperature of the atoms decreases, v̄ also decreases,
therefore, in order to keep constant or even increase Γel, the density n0 must increase
as the process occurs.

From n0 ∝ Nω̄3T−3/2 and v̄ ∝ T 1/2, therefore Γel ∝ Nω̄3/T . Consequently, in order
to achieve runaway evaporation the temperature must decrease in a faster rate than
the atom losses.

At last, the elastic cross-section σ determines the elastic collision rate as well. As we
discussed in section 1.2, the cross-section for indistinguishable fermions is zero due
to Pauli blocking, therefore thermalization by s-wave collisions will not be possible,
thus evaporation neither. This statistical difference between bosons and fermions
led that the quantum degenerate Fermi gas took until 1999 [10], 4 years after the
Bose-Einstein condensation was already achieved.

The strategy implemented by D.S. Jin to get the first degenerate Fermi gas was use
two spin states of the fermionic atom 40K magnetically trapped. Therefore there
is a scattering length and cross-section different from zero between the two spin
component, allowing the evaporative cooling.

Recent works use the magnetic Feshbach resonance described in section 1.2.2 for
evaporative cooling. Therefore the scattering length and cross-section between the
two spin component is tunable, but not only that, the scattering length diverges
at B0. By applying the resonant magnetic field B0 during evaporation, the inter-
atomic collision rate maximizes and thus perform the fastest evaporation. We use
this approach in our experiment.
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Phase-space density

If we regard evaporation with adiabatic expansion, we realize that temperature
does not provide the most qualified variable for quantum degeneracy description,
because adiabatic expansion trades in temperature against density. We therefore
now focus on PSD, which is invariant with respect to adiabatic changes of the
trapping potential.

The PSD is described by

D = n0λ
3
dB ∝ Nω̄3/T 3 (2.82)

with λdB = (2π~2/mkBT )
1/2

the de Broglie wavelength and n0 = N(mω̄2/2πkBT )3/2

is the peak density of a classical gas in a harmonic trap.

The best evaporation is achieved when we obtain the maximum increase in PSD
with the smallest loss in the number (to reach quantum degeneracy with the largest
number of atoms possible). This efficiency can be quantified by the parameter

γ =
ln (Df/Di)

ln (Nf/Ni)
(2.83)

where sub-indices quantities i and f indicates before (initial) and after (final) the
evaporation.

At the experiment, decreasing the trap depth U0 for forced evaporation is equivalent
to decreasing the ODT laser power over time (eq. (2.72)). This function U0(t) (P (t))
is called evaporation ramp.

If evaporation ramp is performed too slowly, in practice, loss and heating mecha-
nisms, as those presented in section 2.3.1, could dominate. On the contrary, if this is
done too fast, the thermalization processes will not have enough time to re-distribute
energy, making evaporation inefficient as well.

Despite the fact that there are theoretical proposals to analytical evaporation ramp
should have to optimize eq. (2.83) to achieve the most efficient forced evaporation
[60], in practice, the most used evaporation ramps are the linear, exponential or a
concatenation of them which are optimized experimentally to maximize γ at any
time.

Adiabatic expansion during forced evaporation

For a Gaussian-shaped optical trapping beam of fixed waist, there is a reduction of
the trap frequencies associated with the decreasing trap depth U0(t), observed from
equation 2.73.

Since the harmonic confinement decreases while performing forced evaporative cool-
ing, the trap extends spatially, presented in the Thomas-Fermi radius equation
(1.34). This expansion can be considered adiabatic, and this adiabatic expansion
has a contribution to decrease the temperature.
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It is important to note here that although the adiabatic reduction of temperature
associated with the trap expansion can achieved impressively low temperatures,
there is no associated gain in phase-space density since the change is adiabatic.

Unfortunately, these trap frequencies ω̄ reduction has associated a decreasing in the
density n0. This results a very small collision rates at lowest depths, due to eq.
(2.81).

In chapter 4 of this thesis we will discuss how to overcome this problem implementing
the time-averaged potentials technique (see section 4.4). In short, one can change
the size of the waist trapping beam to achieve independent control over the trap
depth U0 and frequency ω̄.

At this point we finish the most important theoretical background to understand
the cooling techniques. Therefore in the next chapter we describe the experimental
procedure to the quantum gases production.



Chapter 3

Quantum gases production

This chapter is devoted to present our experimental setup and employed methods to
produce quantum degenerate samples of 6Li. It is divided as follows, in section 3.1 we
describe the different systems that compose our setup, this includes the ultra-high
vacuum system, the laser cooling system, the magnetic field generation system, and
finally, the optical trapping system, which is of particular importance in this thesis.
Section 3.2 is dedicated to explain the procedures that we employ to implement the
laser and evaporative cooling techniques, as well as the production of a superfluid
sample in different interaction regimes across the BEC-BCS crossover.

It is important to mention that this entire chapter is strongly based on the reference
[61], which is a recently published article by our group where a detailed description
of our experiment is presented. This article represents one of the important products
of my master’s project and that is why we reproduce parts of it here.

3.1 Experimental setup

3.1.1 Ultra-high vacuum system

Ultracold quantum gases are considered the coldest objects in the universe. They
are also a rather fragile system. For this reason, they can only be created in a
completely isolated environment, to avoid heating and any other spurious interaction
with the environment. For this reason, we employ an ultra-high vacuum (UHV)
system specially designed for our experiment, in which all the cooling and probing
techniques can be implemented. This system was designed by a former student of
the group, Eduardo Ibarra, to obtain his bachelor’s degree, all the details can be
found in his thesis, in reference [62].

Our UHV system (figure 3.1) is divided in three main sections, namely (i) the effusive
oven; (ii) the differential pumping stage, and (iii) the Zeeman slower system and the
main chamber where the sample is produced and the experiments performed. Each
of these sections is pumped by 200 L/s pumping system composed by a combination
of an ion pump and a non-evaporable getter (model NEXTorr R D200-5 from SAES
getters Inc).

The effusive oven consists of a cylindrical recipient which is heated to a temperature

57
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Figure 3.1: Scheme of the ultra-high vacuum system including the Zeeman and the
Feshbach coil systems. See section 3.1.1 for details. Image taken from [61].
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of 450◦C. The oven contains 5 gr of purified 6Li, which at this temperature the
vapor pressure is about 1 × 10−9 Torr. The oven is connected to the rest of the
UHV system through a 4mm diameter nozzle, where the vapor passes through and
propagates to the rest of the system.

Since the pressure right after the nozzle is too high for producing quantum degen-
erate samples (which require to be at the UHV regime, below 10−10Torr), we need
a differential pumping stage to keep a continuous pressure difference between the
oven and the region in which experiments are performed. The differential pumping
consists of two aligned tubes separated by 25mm from each other. The first one,
facing the oven, has a 4.6 mm inner diameter and a second one, facing the Zeeman
slower, is 7.7 mm inner diameter. This scheme was designed to keep a pressure
difference as large as five orders of magnitude [62]. In this way, the pressure in the
main chamber is of the order of 10−11 Torr.

The Zeeman slower system consist in a tube of 16.5 mm inner diameter and 56 cm
long which connect the main chamber to the differential pumping stage. Around this
tube there is a conical solenoid which is used to create a spatially inhomogeneous
magnetic field which is required to implement a Zeeman slower (more details in
section 3.1.2).

Finally, the main chamber is a stainless steel custom-made octagon chamber from
Kimball Physics Inc. This chamber contains eight CF40 viewports on its sides; two
CF100 vertical viewports; and ten CF16 viewports connected to the chamber by
arms extruded from it at an angle of 13◦ from the horizontal plane. The Zeeman
slower tube is connected to the main chamber by one of these arms. All viewports
have anti-reflection coating for all the wavelengths used in our experiment (532 nm,
671 nm and 1064 nm).

We have placed on both CF100 flanges reentrant viewports of high optical quality
whose inner face is very close to the atoms, at a distance of only half an inch.
This opens the possibility of building a large numerical aperture optical system to
produce high resolution images of the sample.

3.1.2 Magnetic field generation system

We employ three different sets of coils to generate all the required magnetic fields to
trap and manipulate the atoms. We describe each of them in the following sections.

Zeeman slower magnetic field

Atoms coming from the oven move at surprisingly high speeds, given by the Maxwell-
Boltzmann distribution at 450◦C, the mean speed of the atoms is of the order of
1540 m/s, while the capture speed of the MOT is around 60 m/s. For this reason,
we use a Zeeman slower stage to decelerate the atomic beam before they reach the
main chamber.

This cooling stage uses the radiative force (see section 2.2) of a red-detuned laser
beam which counter-propagates respect to the atoms coming from the oven. But
there is a problem: as the atoms interact with the Zeeman slower beam, they start
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to decelerate and, due to Doppler effect, the light is no longer in resonance with
them. So the deceleration mechanism stops working.

To overcome this issue, in a similar fashion as done with the MOT (section 2.2.3),
we can use the Zeeman shift produced by a magnetic field to change the relative
detuning between the light frequency and the atomic transitions. In this way, the
Zeeman slower consists of a series of coils, which generate an inhomogeneous mag-
netic field B(z) along z, the axis of propagation of the atomic beam. But unlike the
MOT case, the purpose of this is to keep the atoms in resonance as they slow down,
not to trap them. Then, using this in equation (2.49), the condition for atoms to
remain in resonance with light is

∆Z =
µB
~
B(z)− kv(z) (3.1)

where µB is the Bohr magneton, k is the wavevector of the cooling frequency of
the slower light and ∆Z is the detuning of the Zeeman slower laser beam. In this
formula we only consider the cooling frequency as we discuss at the beginning of
section 2.2.5, however, the beam also contains a repumper frequency which keeps
the atoms in the cooling cycle.

Assuming the radiative force from equation (2.34) to be constant (which means that
the magnetic field B(z) is such that the atoms remains at constant detuning with the
light), then, the deceleration a ≈ ~kγ/2m is also constant 1. Then, the atoms follow
a uniformly decelerated motion with an initial speed v0. The analytical expression
for magnetic the field B(z) with these conditions is obtained from equation 3.1 giving

B(z) =
~
µB

(
∆Z + kv0

√
1− z

L0

)
(3.2)

where L0 is the length of the Zeeman slower solenoid. The initial speed for our
system was designed to be v0 = 960 m/s, which comes approximately from the
uniformly accelerated motion formula v0 =

√
2aL0. This speed is much lower than

mean speed of the atoms coming from the oven, about 1540 m/s; however, this is
not a problem since the flux of atoms effusing from the oven is very large, about
6 ×1015 atoms/s, so we still are able to decelerate enough atoms to efficiently load
our MOT.

Our Zeeman slower produces the desired magnetic field employing a succession of
eight size-decreasing coils connected in series and an extra ninth coil at the end in
which the current circulates in opposite direction, inverting in this way the magnetic
field sign. This is known as “spin-flip configuration”. All nine coils are wound
directly onto the slower UHV tube using 1 mm diameter cooper wire. The coils
are held together using a thermal conducting and electric insulating ceramic epoxy
(DuralcoTM 128). The total current passing through each coil is of the order of 2.0

1This deceleration depends on the parameters of the cooling frequency of the Zeeman slower
light as a = hkΓ

2m
s

1+s (which is slightly different from our equation (2.34) because it comes from
the Optical Bloch equations), where s = I/Is is the saturation parameter, being I the intensity
of the light and Is= 2.54mW/cm2 the saturation intensity of the D2 line. For our experimental
conditions s ≈ 10, so we are close to the maximum attainable deceleration.
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A to generate a field which goes from a maximum around 600G to a minimum of
about -250 G.

Figure 3.2(a) shows a scheme of the coil configuration of our Zeeman slower. Fig-
ure 3.2(b) presents the generated magnetic field. Finally, Figure3.2(c) exhibits the
calculated velocity profile of the decelerated atoms through their propagation along
the slower.

Figure 3.2: (a) Scheme of our Zeeman slower coil set, the number of windings of
each coil is indicated in the format H ×V , where V denotes the number of layers in
the vertical direction and H provides the number of turns in each layer. (b) Axial
component of the magnetic field generated along the Zeeman slower, the blue dots
are the experimental data, the orange dashed line is the simulated field for this coil
configuration and the solid green curve is the ideal magnetic field obtained through
equation 3.2. The data uncertainty is of 1%, however the corresponding error bars
are not visible at this scale. (c) Evolution of the speed of the atoms propagating
through the Zeeman slower, the dashed horizontal line indicates the capture velocity
of the MOT. Image taken from [61].
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Magnetic quadrupole for MOT

To produce the proposed linear magnetic field for the MOT (section 2.2.3) we use a

quadrupole magnetic field whose axial gradient at the center of the trap is ∂B(z)
∂z

∣∣∣
0

=

28 G/cm. This field is generated by two small coils of 6×4 windings connected in
anti-Helmholtz configuration. Each of these coils is mounted in a cylindrical water-
cooled support to prevent them from heating. This support is made of TeflonTM

which is a machineable amagnetic and insulating material that prevents the induc-
tion of eddy currents on it when the quadrupole field is abruptly switched off. The
two supports are mounted inside the reentrant viewports of the main chamber, along
the vertical direction. The coils are wound with strip-shaped copper wire of 4 mm×1
mm and held together with ceramic epoxy (DuralcoTM 128). The left panel of figure
3.3 shows the position of these coils in relation to the main chamber.

Feshbach resonance magnetic field

As already discussed in section 1.2.2, one of the important advantages of ultracold
lithium gases is the possibility of precisely controlling the interatomic interactions by
means of a very broad Feshbach resonance. In our experiment, we use the resonance
between the states |1〉 and |2〉, shown in figure 1.6, centered at 832 G. So we need
an extra set of coils able to produce an uniform magnetic field with any value from
zero to 1000 G in order to have full control of all interaction regimes.

To do so, we use a pair of coils connected in Helmholtz configuration. We intention-
ally set the coils slightly away from the Helmholtz configuration so the magnetic
field is almost uniform with a small curvature, a saddle-point magnetic potential.
This curvature is useful to confine the atoms along the weak direction of our opti-
cal dipole trap, as presented in section 2.3.3. Right at the Feshbach resonance, at
832 G, this curvature along the coils axis direction is ∂2B

∂x2
|0 =6.2G/cm2, while the

corresponding magnetic gradient ∂B
∂x
|0 is nearly zero.

The Feshbach coils are made by 4 mm square section copper wire. This wire is
hollow, with an internal diameter of 2 mm, which allows cooling the coil by circulat-
ing cold water inside the wire. These coils were fabricated by the company Oswald
Elektromotoren GmbH and each of them is embedded in an insulating resin that
avoids the induction of undesired eddy currents. We can circulate a current above
200 A without noticing any significant heating of the coils. This thermal stability
together with a PID feedback loop makes possible to produce magnetic fields stable
in one part in 10,000. We place these coils along the vertical direction, colinear to
the quadrupole field coils. The left panel of figure 3.3 shows each of the employed
set of coils and their position in the experimental setup.

3.1.3 Laser system

Optical cooling scheme

We use the D2 and D1 optical transitions of 6Li to implement the different laser
cooling techniques in our experiment. The D2 and D1 transitions correspond to
670.997 nm and 670.992 nm wavelength respectively [63]. The main optical frequen-
cies employed in our experiment are shown in figure 3.4. The natural linewidth of
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Figure 3.3: On the left we show a cut of the main chamber, exhibiting the distri-
bution of the Feshbach and MOT coils. On the right, top view scheme of the main
chamber, showing the configuration of the MOT beams (D1 and D2 beams), the
imaging beam, the Zeeman slower beam and the ODT beam. MOT and Feshbach
coils were omitted for clarity. The third pair of MOT beams is perpendicular to the
plane of this scheme and, hence, not shown.Image taken from [61].

both lines is Γ = 2π × 5.87 MHz (referenced as γ in the past chapter) [64].

As discussed in section 2.2.5, since the ground state splits into two hyperfine levels,
it is necessary for the D2 Doppler cooling to have and extra frequency to repump the
atoms into the cooling cycle. This additional frequency called repumper in contrast
with the main frequency called cooling. The D1 sub-Doppler cooling intrinsically
needs two frequencies, which by D2 inheritance are called cooling and repumper
frecuencies. Then D2 Doppler cooling is used first to implement the MOT and later
an optical molasses cooling stage in the experiment. The D1 sub-Doppler cooling is
subsequently used to apply a gray molasses cooling stage.

In this section, we explain how to produce the light of the D2 and D1 optical tran-
sitions of 6Li to implement the different laser cooling techniques in our experiment.
Figure 3.5 presents a simplified scheme of the laser setup. This scheme will be used
to explain the light production.

We use two extended cavity diode lasers (cat-eye configuration, model CEL002 from
MOGLabs), one for each D-transition line. The emission frequency of these lasers
is locked-in into an atomic reference using a standard saturated absorption spec-
troscopy (SAS) [65]. Our atomic reference is purified 6Li heated at 320◦C in a
spectroscopy cell.

Let us start by considering only the theD2 cooling and repumper frequencies, leaving
aside for a moment the D1 line. The light produced by the diode laser locked-in into
D2 transition is pumped into an optical tapered amplifier (model MOA002 from
MOGLabs) called main TA. The amplified beam is divided into two beams and
independently shift to cooling and repumper frequency using two different acousto-
optic modulators (AOM). The frequency difference between them is 228.2 MHz,
which corresponds to the hyperfine splitting of the ground state 22S1/2 of 6Li.
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Figure 3.4: Level scheme (not to scale) for 6Li showing (left) the D2 and (right) the
D1 hyperfine structures and the transitions used for the laser cooling processes. See
section 3.1.3 for details. Image taken from [61].

Figure 3.5: Simplified scheme of the laser cooling and imaging optical setup showing
the main features of the system. Lenses and waveplates have been omitted for clarity.
See 3.1.3 for details. Image taken from [61].
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Next, each one of these beams separately pumps another TA, generating two high
power beams (∼500mW each). One of these beams, the one with lower frequency,
corresponds to the cooling frequency which is red-detuned from the 22S1/2(F = 3/2)
→ 22P3/2 transition by 8.5 Γ (about 50 MHz). The second beam is used as repumper
frequency and is red-detuned from the 22S1/2(F = 1/2)→ 22P3/2 transition by 8.5 Γ.
Note that we cannot specify the hyperfine level of the excited state 22P3/2, because
the energy separation of these hyperfine levels is less than Γ, and therefore we can
not resolve them in our spectroscopy cell.

We superimpose both beams using a 50:50 non-polarizing beam splitter which pro-
duces two beams with the same power, each one carrying both, cooling and repumper
frequencies. One of these beams is used to generate the light for the MOT. To do so
we subsequently divide it into three equally powered beams and couple each one into
a polarization maintaining optical fiber which brings the light directly to the exper-
iment region. The second beam coming from this 50:50 beam splitter is additionally
red-shifted by ∆Z = 76 Γ using an additional AOM. In this way we produce the
Zeeman slower beam (which also arrives into the experiment by a polarization main-
taining optical fiber). The ∆Z frequency shift is chosen to correspond to v0 = 960
m/s, the designed maximum velocity we can decelerate in our slower, as explained
in section 3.1.2.

Now we can consider the D1 line, which we use to implement the gray molasses
cooling stage. As we discussed in section 2.2.5, the D2 Λ transition is very similar
to the D1 Λ transition. The cooling and repumper frequencies of the D2 and D1 line
are separated in both cases by 228.2 MHz. Additionally, during the experimental
sequence, we never use both D2 and D1 lines at the same time. This enables us to
use exactly the same optical setup to generate the D2 and D1 frequencies.

The light produced by a second diode laser locked-in into the D1 line is superimposed
(using a polarizing beam splitter cube) onto the very same optical path of the D2

line laser. Then, we obtain the high power D1 cooling and repumper beams. The
cooling frequency is blue-detuned from the transition 22S1/2(F = 3/2) → 22P1/2(F’
= 3/2) by 5 Γ (about 30 MHz), and the repumper frequency is blue-detuned from
the transition 22S1/2(F = 1/2) → 22P1/2(F’ = 3/2) also by 5 Γ. Finally, the D1

cooling and repumper beams reach the sample using the same optical fibers that
were used for the MOT.

As can be seen, we essentially set all the required frequencies using three AOMs in
double-pass configuration [66]. These AOMs are also used to dynamically change
the frequency of these beams and implement the D2 optical molasses and D1 sub-
Doppler cooling stages, as explained in section 3.2.1.

Generation of probing light

The most important diagnostic tool in cold atoms experiments is imaging the sam-
ples using laser light. In our case the preferred technique is absorption imaging due
to its simplicity and reliability [67, 68].

Absorption imaging consists in probing the sample using a collimated laser beam
whose frequency is resonant to some atomic transition. To perform the image, we
pulse this light on the atoms during a short time (of the order of 5 µs). The atoms will
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absorb some of the light of this beam, casting a “shadow” on it, which corresponds
to the absorption profile of the gas. After passing through the atoms, the light is
collected by a telescope that creates an image of such absorption profile on a CCD
camera (model MANTA G-145 NIR from Allied Vision Technology GmbH). The
density profile of the gas can be extracted from this image.

In our experiment we want to produce samples at different interaction regimes across
the BEC-BCS crossover. This is done by applying an external magnetic field that
changes the value of the scattering length by means of a Feshbach resonance. This
magnetic field, in turn, will also cause a Zeeman splitting on the electronic levels
of the atoms. Hence, probing the atoms at different interaction regimes poses the
necessity of generating different light frequencies to keep the imaging light resonant
with the atoms.

To do so, we use the Zeeman slower beam which already has a considerable shift of
76 Γ. We deviate a fraction of this beam using a polarizing beam splitter before it
is coupled into the Zeeman slower optical fiber, as shown in figure 3.5. Next, this
deviated beam passes through additional AOMs that will further shift the frequency
to match it to the specific magnetic field in which we want to probe the atoms. This
configuration of AOMs allows to tune the frequency of the probing light at different
values within the range from 0 to −220 Γ from the D2 transitions. In this way, we
are able to produce images at practically any magnetic field from 200 to 1200 G and
also at the vicinity of zero magnetic field. In this way, as can be seen in figure 1.6, we
can image the sample in all the superfluid regimes across the BEC-BCS crossover.

Finally, it is important to mention that the magnetic field used to access the BEC-
BCS crossover is high enough to ensure that the hyperfine splitting of the atoms is
well within the Paschen-Back regime, where the separation between the |1〉 and |2〉
states remains almost constant at approximately 76 MHz. For this reason, we can
probe both spin states in any magnetic field through the Feshbach resonance.

3.1.4 Conservative trapping potential ODT

As we discuss in section 2.3.3, we produce the quantum degenerate fermionic sys-
tem in a conservative trap generated by the combination of an optical potential and
a magnetic curvature. The optical potential consists in a far red-detuned single-
beam ODT created by focusing a gaussian infrared laser beam [57]. The magnetic
curvature is produced by setting the Feshbach coils slightly off the Helmholtz con-
figuration, as discussed in section 3.1.2.

The complete ODT laser setup is presented in figure 3.6. This setup is very versatile
as it allows us to produce tunable and moldable potentials. In this Section we will
focus on how we use it to generate a simple ODT in which the quantum degenerate
sample is produced. Later, in chapter 4, we will explain how this setup can be
employed to create time-averaged optical potentials.

To produce the ODT light we use a single mode ytterbium-doped fiber laser from
IPG Photonics Corp. (model YLR-200-LP), which delivers up to 200W of continuum
linearly polarized infrared light at λ = 1070 nm.

The beam of this laser is coupled into a quartz crystal AOM from the company Gooch
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& Housego (model I-M080-2C10G-4-AM3), which resists very high intensities, above
1 GW/cm2. We use the first diffracted order to produce the optical trap.

Therefore, to implement the evaporative cooling (section 2.3.4), it is necessary to
be able to precisely control the power of this diffracted beam. This is done by
controlling the AOM input RF-signal amplitude. The RF-signal is produced by a
circuit based on a voltage controlled oscillator (VCO) whose output amplitude can
be easily controlled using an external analog signal. Hence, the evaporative cooling
stage is performed by changing this analog signal.

To stabilize the power of this diffracted order we employ a PID circuit driven by the
signal of a photodiode (Thorlabs, model DET36A) which detects the small fraction
of the light transmitted by a 99.9% reflection mirror (indicated as “beam up” in
figure 3.6).

With our setup, we are able to generate an infrared collimated beam with R = 2.75
mm radius which we focus on the atoms using a f = 40 cm focal length lens, as
indicated in figure 3.6. The beam waist at focus is w0 = 50µm, with a Rayleigh
length xR = 7.34 mm respectively.

3.2 Methods for quantum gases production

As we discussed at the beginning of Chapter 2, in a very general way, the production
of the quantum sample can be divided into two main processes: an initial laser
cooling stage mediated by absorption and re-emission of light (section 2.2), and the
transference into a conservative potential to apply the cooling by forced evaporation
(section 2.3).

We provide details on the experimental procedures employed to produce ultracold
samples, divided according to these two main processes in sections 3.2.1 and 3.2.2.

3.2.1 Implementation of laser cooling technique

In this first cooling process we are able to produce atomic samples at temperatures
as low as 40 µK containing 4.5 ×108 atoms with a density of the order of 4.5 ×109

atoms/cm3, which correspond to a phase-space density of about 6.6×10−6. We
provide details on the laser cooling procedure in the next sections.

Zeeman slower and magneto-optical trapping

Zeeman slower operation: The quantum sample generation process starts by
heating the lithium sample contained in the oven of our UHV system to 450◦C.
This generates a high temperature atomic beam that propagates along the UHV
system which is decelerated by our Zeeman slower. Along the magnetic coils counter-
propagates (in relation to the atomic beam) a laser beam carrying two different
frequencies, both of them red-detuned by 76 Γ ( ≈ 446 MHz) from the cooling and
repumper transitions of the D2 line, carrying positive circular polarization σ+ and
having a power of 40 mW each. In this way, we are able to decelerate all the atoms
from velocities classes below 960 m/s to speeds of the order of 40 m/s, well below
the 60 m/s capture velocity of the MOT, as shown in figure 3.2(c).
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Figure 3.6: The detailed ODT laser setup, which is divided in two parts. The
upper part of the scheme shows how to prepare the laser beam with the required
characteristics to produce the ODT. The beam radius outgoing from the laser (IPG
Photonics Corp. model YLR-200-LP) is 3740 µm, which is subsequently collimated
to 795 µm radius by the telescope formed by two lenses indicated as L1-L2 with
254 mm and 54 mm focal lengths respectively. The beam is coupled into an AOM
(Gooch & Housego model I-M080-2C10G-4-AM3), we keep the first diffracted order
(red solid line) and we reject the zeroth diffracted order (red dashed line) redirecting
it to a beam block. The first order is collimated to 2750 µm radius by two telescopes
formed by L3-L4 and L5-L6 with 234 mm, 293 mm, 54 mm and 179 mm focal lengths
respectively. The beam-up is composed by two mirrors placed like in a periscope,
which has the purpose to change the beam height to the height of the main chamber
center. A 99.9% reflection mirror (piece of the beam-up) transmits a small fraction of
the light, which is collected and focused in a photodiode (Thorlabs, model DET36A).
The photodiode signal feeds a PID circuit which is employed to stabilize the power
of this diffracted order. The bottom part of the scheme shows how the laser beam
is focused in the main chamber center in order to create the ODT. The lens L7
which focuses the light on the atoms has a 400 mm focal length. L7 is mounted
in a translational stage, which helps to have a fine control of the focus position in
the main chamber. Finally, the light is deviated to a beamblock. All mirrors are
dielectric infrared mirrors and marked with M, however the two MD marked are
dichroic plates, which reflect infrared light but transmit visible light.
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We found that controlling independently the electric current of the spin-flip coil
provides better results. Best results are obtained using a current of 2.0 A for the
spin-flip coil and 2.9 A for all other coils, which optimize the number of loaded
atoms into the MOT and minimize the corresponding loading time.

Loading of the magneto-optical trap: The decelerated atoms arrive into the
main chamber where we capture them and further cool them in a MOT (section
2.2.3. To implement the MOT we use three retroreflected mutually perpendicular
laser beams with a diameter of D = 2.3 cm, as shown at the right of figure 3.3.

The MOT beams carry two frequencies: a cooling frequency, red-detuned from the
22S1/2(F = 3/2) → 22P3/2 transition, and a repumper frequency, red-detuned from
the 22S1/2(F = 1/2)→ 22P3/2 transition. We use the standard σ+−σ− polarization
configuration. We determine the value of the detunings by maximizing the number
of atoms N loaded into the MOT and by trying to keep the temperature of the
sample T as low as possible. Figure 3.7(a) shows N and T as a function of the
cooling light detuning δcool. From these measurements we determine δcool = −8.6 Γ
( ≈ 50 MHz) and δrep = −8.4 Γ as the optimal values.

Figure 3.7: Number of atoms N (red dots) and temperature T (black triangles)
of the atoms of the MOT as a function of (a) the detuning of the cooling light
and (b) the axial gradient of the quadrupole magnetic field. In these plots, the error
bars correspond to one standard deviation of ten independent measurements. Image
taken from [61].
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The power of each MOT beam is about P = 33 mW for each frequency, whose
intensity IMOT = 4P/πD2 ≈ 7.9 mW/cm2 is well above the saturation intensity of
these transitions (ID2

sat = 2.54 mW/cm2). The magnetic field of the magneto-optical
trap is generated by the coils in anti-Helmholtz configuration described in section
3.1.2 which generate a quadrupole magnetic field. We also determine the optimal
parameters of this field by maximizing the number of atoms in the sample while
keeping its temperature as low as possible. Figure 3.7(b) shows a measurement of
N and T as a function of the axial gradient of the quadrupole field, showing that

the value ∂B(z)
∂z

∣∣∣
0

= 28 G/cm is optimal.

As result, after a loading time of 8.6 s we manage to capture up to N = 5 × 109

atoms in the MOT at a temperature, still relatively high, of T = 7 mK and atomic
density of n = 7.5× 1010 atoms/cm3. The phase space density of the system is still
very low, of the order of PSD = 4.7× 10−8. In these measurements, as well as in all
those presented in this paper, the temperature is obtained using the time-of-flight
technique [67].

Doppler and sub-Doppler cooling

In order to further cool down the sample and increase its phase space density, the
gas undergoes two different additional laser cooling processes. We first apply an op-
tical molasses cooling process based on the D2 laser line (section 2.2.1) that allows
approaching the Doppler limit temperature (section 2.2.2). Next, we implement
a gray-molasses technique, employing the D1 line transitions to reach sub-Doppler
temperatures (section 2.2.5) [55]. We provide experimental details in the two fol-
lowing sections.

D2 optical molasses cooling: The theoretical Doppler temperature limit for our
sample is given by TD = 140.9 µK (equation 2.47). To reach this limit it is necessary
to lower the intensity of the MOT light to minimize light-scattering heating, so the
MOT light intensity should be much lower than the saturation intensity ID2

sat = 2.54
mW/cm2. Also, the cooling light must be approached to resonance, having an
optimal value at δcool = −Γ/2. The process needs to be done in absence of any
magnetic field.

After loading the MOT we abruptly switch off the quadrupole magnetic field (we also
switch off the Zeeman slower magnetic field 400 ms before to guarantee the absence of
any magnetic field in the sample region). Simultaneously, we decrease the intensity
of the MOT beams and shift the value of cooling and repumper frequencies towards
resonance. Figure 3.8(a) shows the effect on N and T of the intensity reduction,
while figure 3.8(b) and (c) present the corresponding effect of the frequency shift of
both MOT frequencies.

As we can see, an important temperature drop is observed when the intensity of
the light decreases. Concerning the frequency shift, as long as we keep the detuning
below −2Γ the number of atoms remains approximately constant while temperature
decreases. We determine that the best values for intensity are Icool ≈ 0.35ID2

sat for
cooling light and Irep ≈ 0.3ID2

sat for repumper, while the optimal frequency detuning
is δcool = δrep = −2Γ. We also found that the optimal duration of this molasses
process is 850 µs; if shorter, the temperature does not reach the minimum possible
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Figure 3.8: Number of atoms N (red dots) and temperature T (black triangles) of
the atoms of the MOT after the D2 optical molasses as a function of (a) the intensity
of the cooling light and the detuning of (b) the cooling light and (c) the repumper
light. The dashed black curve in (b) corresponds to the theoretical Doppler limit
for the temperature of our sample. In these plots, the error bars correspond to one
standard deviation of ten independent measurements. Image taken from [61].
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value, and if longer we start losing atoms.

Under these conditions, we are able to cool down about 6 ×108 atoms at approxi-
mately 500 µK. The dashed black curve in figure 3.8(b) shows the theoretical Doppler
limit (equation 2.46), our experimental points are always above it. As discussed in
section 2.2.5, for other elements such as rubidium or cesium, it is observed not only
that the Doppler limit is reached but even sub-Doppler temperatures are attained
due to the emergence of the Sisyphus sub-Doppler cooling mechanism [53][54]. For
lithium, this molasses scheme is not very efficient because the hyperfine levels of
the state 22P3/2 cannot be well resolved, since their separation is smaller than Γ.
This limits the efficiency of the cooling process and keeps the sample well above the
Doppler limit. The increase of the phase space density is also not very good, and
we improve only by a factor of 2, being of the order of PSD = 1 × 10−7. For this
reason, we apply a second laser cooling technique that utilizes the transitions of the
D1 line, known as gray molasses, that allows true sub-Doppler cooling [55].

D1 gray molasses sub-Doppler cooling: Gray-molasses cooling is a two-photon
process in Λ-configuration (see figure 3.4) which combines both, Sisyphus cooling
[54] and Velocity Selective Coherent Population Trapping (VSCPT) [56] as cooling
mechanisms (more details in section 2.2.5).

In our experiment, we implement this cooling stage immediately after the D2 mo-
lasses stage. We specifically use the D1 transition frequencies 22S1/2(F = 3/2)
→ 22P1/2(F’ = 3/2), which we call “cooling” frequency, and 22S1/2(F = 1/2) →
22P1/2(F’ = 3/2), which we call “repumper”. This nomenclature is inherited by
the standard molasses. Both frequencies will be detuned, the cooling frequency by
δ1 and the repumper light by δ2. Another important parameter is the difference
between these detunings that we define as δ = δ1 − δ2.

To characterize the gray-molasses we start by fixing δ1 = +5.7 Γ and keeping the
repumper intensity low, at about Irep ≈ 0.06ID1

sat , while the cooling intensity at its
maximum value of the order of Icool ≈ ID1

sat . The saturation intensity for the D1 line
is ID1

sat = 7.59 mW/cm2. We next measure the number of atoms and the temperature
of the sample as the detuning difference δ varies. The results are shown in figure
3.9.

We can see that the temperature follows a Fano-like profile, reaching a minimum at
δ = 0 (i.e. at δ1 = δ2), the so called Raman condition, in which the temperature
is as low as 40 µK. Although the number of atoms does not reach its maximum at
the Raman condition but at δ ≈ −0.25 Γ, we still have a very good efficiency of
the process at δ = 0, being able to cool about 75% of the atoms. These results are
expected, as previously reported for the case of 6Li [55]. Notice that the graph figure
3.9 has no data points in the interval 0.4 < δ < 0.8, as explained in reference [55], in
this range the energy of the dark state becomes larger than the energy of the bright
state and in consequence the VSCPT process significantly heats the cloud. In this
range the temperature becomes so high that time-of-flight measurements become
very difficult to analyze and the measurement of N and T cannot be performed.
Notice how the error bars of the data around that range consistently increase.

We also measure the effect of changing the cooling detuning δ1 while keeping the
Raman condition δ = 0. Both the number of atoms and the temperature remain con-
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Figure 3.9: Number of atoms (red dots) and temperature (black triangles) of the
sample as a function of the detuning between cooling and repumper light during
gray molasses sub-Doppler cooling stage. The error bars correspond to one standard
deviation of ten independent measurements. Image taken from [61].

stant in a wide interval of frequencies, showing the robustness of the gray-molasses
process. We keep δ1 = +5.7 Γ because the efficiency of our acousto-optic modulators
is maximum at that value.

The duration of the gray molasses is also an important parameter. We observe that
after 400 µs the efficiency of the process becomes nearly constant and obtain better
results for a duration time of 1 ms.

For the next stages it is important to have all the atoms of the sample in the F
= 1/2 hyperfine state of the ground state 22S1/2 because the Feshbach resonance
that we will use is present between its two magnetic sublevels. To do so, we switch
off the D1 repumper light 50 µs before than the D1 cooling light, so we manage to
concentrate nearly 95% of the atoms in the F = 1/2 hyperfine level.

To summarize, all the important steps of the laser cooling procedure are presented
in Table 3.1. At the end of all these processes, we are able to produce a sample
containing about 4.5× 108 atoms in the hyperfine F = 1/2 state at a temperature
of 40 µK. The phase space density increased considerably to PSD = 6.6 × 10−6 .
This represents an excellent starting point for the subsequent cooling stages.

3.2.2 Cooling toward quantum degeneracy

After the D2 and D1 cooling stages the sample is ready to be transferred into a
conservative potential (section 2.3.3) in which evaporative cooling (section 2.3.4)
can be applied and quantum degeneracy is achieved. In the following sections we
explain how this process is done in our setup.

Transference into the conservative trap

As explained in section 2.3.3, our trap is created as the composition of a single-beam
optical dipole trap and a magnetic curvature, which provide, respectively, radial and
axial confinement.
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Cooling stage Parameter Optimal Value

MOT

∂Bz(z)/∂z|z=0 28 G/cm
δcool -8.6 Γ
δrep -8.4 Γ

Loading time 8.6 s
N 5× 109 atoms
T 7 mK

PSD 4.7× 10−8

D2 Molasses

δcool -2 Γ
δrep -2 Γ
Icool 0.35 ID2

s

Irep 0.30 ID2
s

Duration 850µs
N 6× 108 atoms
T 500µK

PSD 1× 10−7

D1 Gray molasses

δ1 +5.7 Γ
δ2 +5.7 Γ
Icool ID1

s

Irep 0.06 ID1
s

Duration 1 ms
N 4.5× 108 atoms
T 40µK

PSD 6.6× 10−6

Table 3.1: Optimized parameters of the optical cooling stages.
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During the D1 cooling process we ramp the optical dipole trap (ODT) from zero
to 150 W in 7 ms. The beam is focused right at the center of the atomic cloud,
as shown at the right figure 3.3. Once the power of the optical beam has reached
its maximum value we ramp the Feshbach magnetic field to 832 G in 50 ms. This
field corresponds to the unitary limit in which the scattering length diverges, which
is optimal for the following evaporative cooling stage because the collision rate is
maximized and the thermalization process is optimized as discussed at section 2.3.4.

When the magnetic field is ramped up, the F = 1/2 hyperfine state splits into the
two states |1〉 and |2〉 , where |1〉 has lowest energy for all magnetic fields. In the
magnetic fields that we employ these states are well within the Paschen-Back regime,
so the energy difference between them remains almost unchanged. Moreover, if the
ramp of the magnetic field is adiabatic, both states are nearly equally populated, so
we create a well balanced mixture.

The Feshbach field curvature provides an axial harmonic confinement of about
ωxmag ≈ 2π × 11 Hz. This confinement, of course, is negligible at the beginning
of the ODT loading since at 150 W power the confinement provided by the optical
trap is much higher, ωrODT

≈ 2π × 10 kHz and ωxODT
≈ 2π × 87 Hz (see equation

2.75), however, the magnetic confinement becomes more and more important as we
apply the evaporative cooling process in which the power of the ODT laser beam is
gradually decreased.

After the optical and magnetic fields have been ramped up we trap about 3 × 106

atoms in the conservative potential, which means that our trapping efficiency is of the
order of 1%. We hold the atoms in this trap for 20 ms more to let them settle in the
minimum of the potential. At this point we can implement the evaporative cooling
process (section 2.3.4), which is the last step before reaching quantum degeneracy.
The temperature of the sample is difficult to measure because the geometry of the
trap is very elongated so time-of-flight imaging is impractical. However, since the
trap increases the density of the sample, we estimate a considerable increase of the
temperature of the sample to about 200 µK. Figure 3.10 shows an absorption image
of the atoms from the sub-Doppler cooled sample transferred into the ODT beam.

Evaporative cooling

Evaporative cooling is performed by ramping down the ODT power while keeping
the magnetic field at 832 G. As we discussed in section 2.3.4, to achieve runaway
evaporation it is fundamental that the collision rate does not decrease as the atoms
are evaporated, this means that the density of the cloud needs to increase as its
temperature is reduced. To guarantee this condition the evaporation process must
be performed slow enough for thermalization to occur. At the same time, the evap-
oration has to be the main loss process, so it cannot be too slow for the background-
vapor collisions with the sample to be important. A good quantity to evaluate the
effectiveness of the evaporation process is the phase space density PSD, which must
increase as the evaporation is applied [58].

The evaporative process is performed by concatenating three exponential ramps, as
shown in the blue curves of figure 3.11. The first ramp goes from 160W to 35W
in 300 ms having a characteristic time of τ1 = 125 ms (dotted curve); the second
ramp, from 35 W to 10 W in 1000 ms, with τ2 = 440 ms (dashed curve), and finally,
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Figure 3.10: Absorption imaging of the atoms transferred to the optical dipole
trap (horizontal darker region) from the laser sub-Doppler cooled sample (round
lighter region). The color gradient corresponds to the optical density of the sample
according to the color bar on the right. Image taken from [61].

a very slow ramp from 10 W to P0 = 35 mW in 2.6 s, with τ3 = 2000 ms (solid
curve). The value of P0 is variable, depending the target sample temperature as we
will discuss, but around the order of 35 mW. The total duration of the evaporation
process is 3.8 s. These parameters are determined by maximizing the phase density
of the system. The black data points in figure 3.11 shows how the measured PSD
increases as the evaporation proceeds. Notice that PSD ≥ 1 at the end of the last
ramp, indicating the onset of quantum degeneracy.

At the end of the third evaporation ramp we adiabatically ramp the Feshbach field
to the corresponding value in order to produce a sample in any desired interaction
regime across the Feshbach resonance, this magnetic ramp lasts about 300 ms. The
regimes that we explore are within the interval of 670 to 900 G, which contains the
BEC-BCS crossover.

By changing the value of the Feshbach field we also modify the curvature of the
magnetic field, however it changes less than a 10% within the mentioned interval
of interest, which means that we do not significantly modify the geometry of the
trap as we change the scattering length. Of course, as can be seen in equation 2.73,
the frequencies of the trap depend on the power P0 of the ODT, which, in turns
determines the temperature and degree of degeneracy of the sample.

After the evaporative cooling process we are able to produce quantum degenerate
superfluid samples containing about N = 5× 104 atomic pairs at a temperature of
the order of T/TF = 0.1 (which corresponds for this value of N to approximately
20 nK) and a phase space density well above the unity, of the order of PSD ≈ 10,
demonstrating the fully degenerate nature of our sample. The trap frequencies are
ωr ≈ 2π× 163 Hz and ωx ≈ 2π× 11 Hz, which means that our sample is cigar-
shaped with an aspect ratio of the order of 1:15 (figure 2.11). The duty cycle of our
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Figure 3.11: Evaporation ramps performed by decreasing the power of the optical
dipole trap (blue curves). See text for details. Measurement of the phase space den-
sity of the system during evaporation (black data points). The error bars, although
not visible at this scale, correspond to one standard deviation of ten independent
measurements. Image taken from [61].

experiment is shorter than 14s.

Superfluids across the BEC-BCS crossover

As mentioned in the previous section, we select the interacting regime of the pro-
duced sample at the end of the last evaporation ramp by means of the Feshbach
resonance that allows us to set the value of the scattering length as. As explained
in Section , we are able to produce and probe samples at practically any magnetic
field up to 1200 G. Specifically, as we explain below, we are able to produce ultra-
cold superfluid samples within the interaction range of 7.6 ≥ 1

kF as
≥ −0.65, which

means that we can produce samples from the deep (weakly interacting) BEC regime
to the strongly interacting BCS regime, passing, of course, through unitarity at

1
kF as

= 0. Clearly, we have access to most of the crossover region, 1 > 1
kF as

> −1,
corresponding to the magnetic field interval 790 to 900 G.

Evidently, the most important point here is to achieve, at every interacting regime,
temperatures that are below the critical superfluid temperature, TC . On the deep
BEC side, 1

kF as
> 1, the critical temperature is approximately TBECC =0.52TF and

it is nearly independent of the scattering length [69]. The minimum temperature
attainable in our experiment, T/TF = 0.1, remains well below TBECC . In this case,
the density profile of the cloud exhibits the very characteristic bimodal distribution.
The condensed fraction presents a parabolic sharp density profile that arises from
the Thomas-Fermi approximation (section 1.3), while the non-condensed thermal
atoms follow a gaussian Maxwell-Boltzmann distribution, which we use to estimate
the temperature of the cloud in time-of-flight (TOF) imaging [67]. These features
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Figure 3.12: Absorption images of the atomic samples (right pictures) and their cor-
responding integrated density profile (left graphs) as temperature is decrease. Upper
panels: thermal gas above critical temperature TC . Middle panels: gas just below
the critical temperature, notice the bimodal gaussian-parabolic distribution. Lower
panels: molecular Bose-Einstein condensate well below the critical temperature, the
parabolic distribution is dominant and the gaussian one is barely noticeable. The
color gradient corresponds to the optical density of the gas. All pictures were taken
after a time-of-flight of 15ms. In the graphs, the dashed black line corresponds
to a fitting of only the gaussian wings, while the orange solid line to the bimodal
distribution. Image taken from [61].
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can be seen in figure 3.12. The weakest interacting BEC that we can produce
corresponds to a magnetic field of 670G for which as = 1080 a0 and 1

kF as
= 7.6.

For lower magnetic fields the lifetime of the molecular condensate is too short to
perform any typical experiment (it is shorter than 100 ms, while in any other regime
described here, it is of the order of 1.5 s).

As the scattering length increases, within the BEC-BCS crossover range, and spe-
cially right at unitarity, this well defined bimodal distribution starts to wash out
and becomes broader due to strong interactions [35, 70]. In this regime, it is not
possible to discriminate between the superfluid fraction and the thermal fraction,
and the density profile looks nearly Gaussian. However, we know that we are in the
superfluid regime due to the following consideration. On the vicinity of the unitary
limit the critical temperature is given by TUC ≈ 0.167 TF [71], which again, is above
the temperature of our sample.

Figure 3.13: Absorption images of quantum degenerate atomic samples (upper pic-
tures) and their corresponding integrated density profile (lower graphs) as the scat-
tering length is varied across the BEC-BCS crossover. Left panels: Bose-Einstein
condensate of molecules at 1

kF as
≈ 7.6, the bimodal and gaussian fits are shown as

a orange solid and black dashed lines, respectively. Middle panels: superfluid gas
at unitarity at 1

kF as
≈ 0.01. Right panels: ultracold gas at the BCS side of the

Feshbach resonance at 1
kF as
≈ −0.37. The color gradient corresponds to the optical

density of the gas. All pictures were taken after a time-of-flight of 20 ms. Image
taken from [61].

In contrast, on the BCS side of the crossover, the critical temperature is given by
[23][24] TBCSC ≈ 0.28 TF e

−π/2|kF as| so it exponentially decays as the quantity |kFas|
increases. For instance, at 1

kF as
= −0.65, the critical temperature for the superfluid

state is TBCSC /TF ≈ 0.1, which is comparable to the minimum achievable tempera-
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ture of our setup. In consequence, we cannot access the deep (weakly interacting)
BCS superfluid regime because the critical temperature is below the technical limit
of our experiment. This means that in our setup, superfluid regimes are attainable
within the range 7.6 ≥ 1

kF as
≥ −0.65. Figure 3.13 shows a sequence of absorption

images of a superfluid at TBCSC /TF = 0.1 containing N = 5×104 atomic pairs, as the
scattering length changes from the BEC to the BCS regimes across the crossover.

Besides the considerations concerning the critical temperature that we have pre-
sented here, we have also performed an additional measurement that ensures that
all the observed regimes present superfluidity. Right after releasing the atoms from
the trap, we have performed a fast Feshbach magnetic field ramp from the strongly
interacting regimes into the deep BEC side [23][24]. As result of this ramp, the
many-body wave function of the system is projected onto the far BEC side of the
resonance. In all cases we observe the characteristic BEC bimodal distribution in
the density profile, indicating that at unitarity and its vicinity we always have con-
densation of atomic pairs.

We have presented the experimental setup and methods we use to produce and study
ultracold fermionic superfluid samples of 6Li. We are able to generate samples
containing 5 × 104 atomic pairs at temperatures as low as T/TF = 0.1 at any
superfluid regime across the BEC-BCS crossover within a duty cycle shorter than
14 s. Our setup combines versatile and state-of-art techniques, such as the TAP
technique, which is the main topic of this thesis.

As we discuss in the following chapters, we develop and implement time-averaged
optical potentials which permit us to change the size of the optical trap, allowing
us to have more control in the density variable. Also the TAP technique allow us to
alter the geometry of the trap precisely. It is possible to “paint” different trapping
potentials, for example a double-well, a box potential and a harmonic potential,
which will allow us to study different aspects of quantum matter.



Chapter 4

Time-averaged optical potentials

Efficient transference of atoms into the ODT is needed to produce large enough
quantum gases. An important variable to have an efficient transfer is the size of the
trap. On the one hand, a tight trap will not overlap sufficiently with the initial atom
cloud and it can even heat up the atoms due to the high intensity as we discuss at
section 2.3.1. On the other hand, wide traps have low trapping frequencies which
translate to low densities of the sample. This is disadvantageous as we conclude at
the end of section 2.3.4, since high collisional rates necessary for evaporative cooling
requires high densities.

By considering equation 2.73 one can see that the only free parameter that allows
manipulation (other than the laser’s power which is used to do the evaporation) is
the beam’s waist. Hence, finely changing the waist size allows us to have both the
advantages of narrow and wide traps. Nevertheless the waist size is intrinsically
related to the focal length of the lens that creates the ODT so it cannot be changed
so simply. A clever solution to this is to create a time-averaged potential, in order
to control the size of beam waist.

The basic idea to control the size of the beam waist involves rapidly modulating
the position of the laser beam focus. The timescale of the modulation is much
faster than the radial trap frequency. By doing so the atoms do not respond to
the “instantaneous” motion of the beam and instead “see” a potential proportional
to the time-averaged intensity profile. We will refer to this method as TAP, from
“Time-Averaged Potential”. The modulation, which we call modulation function
f(t), has a specific form for each desired TAP. The inspiration for this technique is
based on the article of Gupta et. al. [72].

In this chapter we discuss in detail the TAP technique and its experimental im-
plementation in section 4.1. Later, in section 4.2, we discuss how calculate TAP
for some basic modulation functions f(t). In section 4.3 we develop a method to
calculate the modulation function f(t) necessary to obtain any desired TAP, with
special emphasis to the harmonic potential. At the end, in the case of harmonic
potential, we observe that the trap depth is reduced depending the modulation. We
characterize this behavior in section 4.4.

81
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4.1 TAP technique

The ODT frequencies at high power (150 W), which are used during the beginning
of evaporation, are ωrODT

≈ 2π×10 kHz and ωxODT
≈ 2π×87 Hz (see equation 2.75).

The frequency of the modulation f(t) need to be at least some order of magnitude
larger than this trap frequencies to ensure a time-averaged potential [72].

There are different methods to modulate the center position of the beam at time-
scales faster than the trap frequencies of the ODT. One useful approach is using
active optical devices like acousto-optic modulators (AOM), acousto-optic deflectors
(AOD) or electro-optical deflectors (EOD).

Since AOMs are suitable for high power (in contrast to EODs) and we already have
an AOM in our experiment, which is used to control the evaporative cooling process,
we decided to use this AOM in order to implement the TAP technique.

A briefly introduction about the physics of the AOM is given at subsection 4.1.1.

4.1.1 AOM

An AOM consists of a crystal (e.g. TeO2) attached to a radio-frequency (RF) trans-
ducer, which in turn is connected to a high-power RF source. This setup produces
high-frequency sound waves in the crystal i.e. a density modulation associated to the
sound wave vector ~ks as shown in the left side of figure 4.1. Effectively the RF makes
the crystal behave as a diffraction grating with lattice pattern D = 2π/ks then, an
incident laser beam with wavelength λ = 2π/kL will experience Bragg diffraction
mλ = 2D sin θB, with the first-order (m = 1) diffracted beam travelling at an angle
θB = arcsin(ks/2kL) with respect to the incident beam, where θB is called the Bragg
angle. Hence, for small angles we find that the deflection is proportional to the RF
frequency θB ∝ csks ≡ ωRF , where cs is the speed of sound in the crystal (section
14.10 of [73]).

Figure 4.1: Bragg scaterring in an AOM (left). A sound wave in the crystal creates
a periodic modulation of the refractive index, which produces Bragg diffraction in a
laser beam with angle θB for the first order. This process can be analyzed through
the photon-phonon picture (right). Here a initial photon of frequency ωL,i and

momentum ~~kL,i experiences Bragg diffraction by the absorption of a phonon of

frequency ωRF and momentum ~~ks.

As seen in the right side of figure 4.1, this process can also be analyzed at the level
of photon-phonon interactions. An incident photon with wave vector ~kL,i absorbs
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a phonon with wave vector ~ks, resulting in a scattered photon with wave vector
~kL,f . The momentum and energy conservation conditions imply that ~kL,i cos θi =
~kL,i cos θf , ~ks−~kL,i sin θi = ~kL,i sin θf and ωL,f = ωL,i+ωRF . Using the approximation
that ωL,f = ωL,i due to ωRF/ωL,i ≈ 90MHz/300THz ≈ 3× 10−7 we get that kL,f =
kL,i which results, through the first momentum conservation equation, in θi = θf ≡
θB. Under this theoretical frame, we can understand higher-order diffraction as
multi-phonon absorption, and negative-order diffraction as phonon-emission into
the crystal by photons (section 14.10 of [73]).

4.1.2 TAP technique

As a summary from the previous section, we have that an AOM with an induced
acoustic wave diffracts a laser beam at an angle θB proportional to the frequency of
such wave, ωRF .

If we dynamical change the signal ωRF (t), we get a time-dependent Bragg angle
θB(t). Let us consider that we vary the frequency of the RF signal through the
formula ωRF (t) = ωRF,0 + δωRFf(t), so we vary ωRF around a central value ωRF,0
through a periodic modulation function f(t) and with an amplitude δωRF . Then,
we get a time-dependent Bragg angle of the form θB(t) = θB,0 + δθBf(t). In other
words,

θB(t) ∝ ωRF (t) = ωRF,0 + δωRFf(t)

Now, we can employ a lens to transform the angular displacement θB(t) into a
transverse displacement d(t) from the focal point. Suppose we use a lens with a
focal length f1. If we place such lens along the optical path of the diffracted beam
of the AOM at a distance f1 apart from the AOM, the diffracted beam will be focused
on the focal plane of the lens, which is orthogonal to the beam and separated from
the lens by exactly a focal length f1. As we change the frequency ωRF , the angle
of the diffracted beam will change accordingly but the beam will remain focused on
same focal plane, translated by a distance d from the original focal point. Hence,
we can dynamically control d by changing the value of ωRF . In other words, this
special configuration has the property to transform angular displacement δωRFf(t)
into transverse displacement d(t).

We use this idea with the ODT beam to implement a time-averaged potential. In
this case, if the modulation function f(t) is fast enough (i.e. if the characteristic
time of f(t) is much shorter than the inverse of the trap frequencies), the trapped
atoms will experience a static trap spread over the distance d, rather than a moving
trap.

Figure 4.2 illustrates these ideas. In this scheme, the initial Gaussian beam is
collimated before the AOM. Here, we show two paths of the first-order beam de-
flected at time t and t+ δt, which varies in time due to time-dependent Bragg angle
θB(t) ∝ ωRF (t) = ωRF,0 + δωRFf(t).

The next step is to establish an algorithm to calculate the form of the modulation
ωRF (t) to create any desired potential.
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Figure 4.2: Painting with an AOM. The time-dependent AOM driving frequency
ωRF (t) results in a time-dependent Bragg diffraction angle ωB(t). Through a suit-
able FM waveform f(t), one can create arbitrary time-averaged intensity profiles.
The focal length f1 of the lens placed after the AOM determines the conversion of
amplitude δωRFf(t) to amplitude d(t).

4.2 Calculating time-averaged potentials

We now move on to calculate the form of the resulting time-averaged intensity profile.
Without loss of generality, we assume that the TAP displacement takes place along
the y-direction. Consider an AOM driving RF signal with carrier frequency ωRF,0,
FM waveform f(t) and amplitude δωRF . This results in time-dependent transverse
shift in the position of the focus described by ỹ(t) = y − hf(t) in the focal plane.
The function f(t) is periodic with frequency ωmod (which has to be much faster than
the trap’s radial frequency) bounded between -1 and 1. Also, we will refer to h as
the TAP amplitude. That said, the time-average intensity profile is given by

Ī(y, z, x) =
ωmod
2π

∫ 2π/ωmod

0

I(y − hf(τ), z, x)dτ, (4.1)

where I(y, z, x) is the intensity of a Gaussian beam given by the equation 2.69.
As we will discuss later on, the conditions over f(t) ensure that it is equivalent to
calculate the TAP for half an oscillation period π/ωmod (and trivially, for multiples
of that quantity nπ/ωmod).

A general analytic integration of equation (4.1) for every modulation function f(t)
does not exist, therefore it needs to be calculated numerically, as we present at the
end of this section.

In particular, there are some particular solvable examples such as the triangular-
and square-wave modulation, which we will now explore.

4.2.1 Analytical calculations

Substituting the gaussian beam intensity given by equation 2.69 we can compute the
time-average profile at equation (4.1) over two triangular-wave periods obtaining
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Ī(y, 0, 0) =
I0

2T

∫ T

−T
e−2(y−hτ/T )2/w2

0dτ

=

√
π

2

I0w0

4h

[
erf

(√
2(y + h)

w0

)
− erf

(√
2(y − h)

w0

)]
, (4.2)

which is plotted in figure 4.3. We see that for large values of h the triangular wave
creates a one-dimensional box potential near the center.

Figure 4.3: Analytically calculated time-averaged potential for a triangular wave
modulation at different amplitudes (below). For large values of h (above) the trian-
gular wave produces a box-like potential. The amplitude h for each triangular wave
modulation is given in units of the Gaussian beam waist w0.

Another time-averaged potential that can be calculated analytically is using the
square-wave modulation. A square-wave over the first half-period can be analytical
expressed as hsgn(τ − T/4) where sgn(t) is a sign function. Integrating equation
(4.1) over the first half-period results in

Ī(y, 0, 0) =
I0

T/2

∫ T/2

0

e−2(y−hsgn(τ−T/4))2/w2
0dτ

=
I0

T/2

[∫ T/4

0

e−2(y+h)2/w2
0dτ +

∫ T/2

T/4

e−2(y−h)2/w2
0dτ

]
(4.3)

=
I0

2

[
e−2(y+h)2/w2

0 + e−2(y−h)2/w2
0

]
,
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which is the sum of two Gaussian beam profiles with the same waist size as the
original one, centered in −h and h respectively. Nevertheless each profile has only
half of the original center-intensity I0. This profile is of particular interest because
it can be used to generate a double-well trap, as shown in figure 4.4.

Figure 4.4: Analytically calculated time-averaged potential for a square wave mod-
ulation at different amplitudes (below). The amplitude h for each square-wave
modulation (above) is given in units of the Gaussian beam waist w0. For h ' 1 the
square-wave produces a double-well trap.

4.2.2 Numerical calculations

Alternatively we can calculate integral 4.1 numerically. If we do so for a sinusoidal-
wave modulation it results in a double well-like trap which is plotted in figure 4.5.

4.3 Calculating the painting function

We have already shown how to calculate Ī using basic (and simple to experimentally
implement) f(t) waveforms (i.e. f(t) → Ī), but our goal is to do it the other way
around. We want a method that allows us to determine the function f(t) needed to
create an arbitrary potential shape Ī (i.e. Ī → f(t)).

To find a recipe to determine the painting function f(t) for a given Ī, we use an
approximate method where we consider the unpainted beam (the “paintbrush”) to
be a delta function in the y-dimension. Under that approximation, equation 4.1
integrated over a half period becomes
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Figure 4.5: Numerically calculated time-averaged potential for a sinusoidal mod-
ulation at different amplitudes (below). The amplitude h for each sinusoidal-wave
modulation (above) is given in units of the Gaussian beam waist w0. For large values
of h the sinusoidal wave produces a double well-like trap.
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Ī(y, 0, 0) =
I0

T/2

∫ T/2

0

δ(y − hf(τ))dτ, (4.4)

integrating by substitution where u = y − hf(τ) and using differentiation of the
inverse function we get

Ī(y, 0, 0) =
I0

T/2

∫ y−h

y+h

δ(u)
du

−hḟ(f−1(y−u
h

))
=

2I0

T

1

hḟ(t)
. (4.5)

In the last term we return to the original variables where t satisfies u = 0 = y−hf(t).
The expression y = hf(t) seems pretty innocent but under our delta-paintbrush
approximation it acquires meaning. It implies that the relation between the spatial
coordinate y and time t of our paintbrush is no other than f scaled by a factor of
h), which is what we wanted in the beginning.

Then, if we force make the equation (4.5) to be equal to our desired function g, we
get

g(y) =
Ī(y, 0, 0)

I0

=
2

T

1

hḟ(t)
, (4.6)

rearranging the terms and using again that y = hf(t) we get

g(hf(t))hḟ(t) =
2

T
, (4.7)

integrating over t (using a dummy variable) and introducing the variable c to ensure
“normalization” (needed to satisfy the conditions we imposed over g and f) we get

c

∫ t

0

g(hf(τ))hḟ(τ)dτ = c

∫ y=hf(t)

−h
g(Y )dY =

2

T
t. (4.8)

Therefore our main goal is to solve equation 4.8 in order to find y. Once we have y =
hf(t), one must remember that, by hypothesis, the solution we obtained corresponds
only to half a period, so we need to mirror that solution over the y-axis to obtain the
other half thus creating a continuous function (following our analogy here continuous
means that the paintbrush never separates from the canvas). Equation 4.8 can be
solved analytically for some profiles. In the next subsection we exemplify how to
analytically search for a particular waveform.

4.3.1 Analytical example

Our target function is g(y) = (1+ay/h)Θ(1−|y/h|) where Θ is a Heaviside function
and −1 ≤ a ≤ 1. First we calculate the normalization constant c and then we
integrate equation 4.8 at t = T/2
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c

∫ h=hf(T/2)

−h
g(Y )dY = c

∫ h

−h
(1 + aY/h)dY (4.9)

2

T

T

2
= c

[
(1 + a)2

2a/h
− (1− a)2

2a/h

]
(4.10)

1 = c
h

2a
[4a] . (4.11)

So c = 1/2h. We now have everything we need to calculate y = hf(t)

1

2h

∫ y

−h
(1 + aY/h)dY =

1

2h

∫ y

−h
(1 + aY/h)dY (4.12)

2

T
t =

1

2h

[
(1 + ay/h)2

2a/h
− (1− a)2

2a/h

]
(4.13)

4a
2

T
t+ (1− a)2 = (1 + ay/h)2 (4.14)√

4a
2

T
t+ (1− a)2 − 1 = ay/h (4.15)

y =
h

a

(√
4a

2

T
t+ (1− a)2 − 1

)
. (4.16)

Where the time interval goes from 0 < 2t/T < 1 (half a period). As we said before,
we have to mirror our solution over the y-axis to obtain the other half of the function
i.e. to complete the full period. The analytical waveform we calculated is plotted
in figure 4.6. We also calculate the integral 4.1 numerically for the waveform and
plot the resulting potentials shapes with solid-lines in figure 4.6. Dashed line curves
are calculated using the delta-paintbrush approximation which, by construction, is

the desired function g(y) =
w0

√
π/2

2h
(1 + ay/h)Θ(1 − |y/h|) with its corresponding

normalization factor. Notice that in the limit a → 0 the FM waveform becomes
a triangular wave as expected (black curve). This potential shape is of particular
interest as the linear slope can be tuned to cancel the effect of gravity within the
trapping region.

4.3.2 Numerical method and paramount example

Additionally, a situation where analytic solutions may not exist is possible. There-
fore, we wish to have a generally applicable numerical algorithm for determining the
desired function f .With this in mind we use c

∫ y
−1
g(Y )dY = t (equation 4.8 with

T = 2 and h = 1) as a guide. First we create a partition Y=[y0,y1,...,yN] which
goes from y0=-1.0 to yN=1.0. Then we calculate the integral of the desired function
g numerically from y0=-1.0 to each Y[i] and save that value as T’[i] in an array
T’. In synthesis the algorithm is:

for i in [0,...,N]

T’[i]=integrate(g,-1.0,Y[i])

end
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Figure 4.6: Analytically calculated waveform (above) used to obtain a linear-slope
time-averaged potential with different inclinations (below). The resulting waveform

is y = h
a

(√
4a 2

T
t+ (1− a)2 − 1

)
over half a period 0 < 2t/T < 1 and then it

is simply mirrored over the y-axis. We can create linear-slopes with negative and
positive inclinations a. The amplitude of all the waveforms is h = 6 given in units of
the Gaussian beam waist w0. The solid line time-averaged potentials are calculated
numerically from equation 4.1 and the dashed lines are calculated using the delta-
paintbrush approximation. This potential shape is of particular interest because the
linear slope can be tuned to cancel the effect of gravity within the trapping region.
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Likewise, we need a normalization constant c just as in equation 4.8. Analogously
c is equal to the integral over all the defined interval, i.e. from -1.0 to 1.0 which
corresponds to the last value of the array T’ i.e. T’[N]. We normalize dividing
all the elements in the array T’ by T’[N] obtaining the normalized array, which
we will call T and goes from t0=0.0 to tN=1.0. Thus, we have obtained a binary
relation between each element Y[i] and T[i]. This binary relation is our desired
painting-function f(t) defined as f : T → Y.

To exemplify this method we will now calculate the waveform f(t) needed to obtain a
time-averaged potential with shape g(y) = (1− (y/h)2)Θ(1− |y/h|) i.e. a parabolic
potential. This waveform is of great relevance to us because we use a parabolic
potential in most of our experiments. The main reason for this choice lies in the
convenience to model the trap as a harmonic potential, as presented in section 2.3.2.

If we apply the delta-paintbrush approximation and use equation 4.8, we find that
we need to solve the equation

3y

4h
− y3

4h3
+

1

2
=

2

T
t, (4.17)

for y, which needs to be solved numerically since there is no analytical solution.
Therefore we have to follow the algorithm presented above to find the solution
over half a period which is plotted in figure 4.7 (see appendix for the code). The
numerically obtained TAPs resulting from different values of hf(t) are also plotted
in figure 4.7. The potentials drawn with dotted lines are calculated via the delta-
paintbrush approximation, which, by construction, is the desired function g(y) =√

π
2

3w0

4h
(1− (y/h)2)Θ(1− |y/h|) with its corresponding normalization factor.

Notice that with increasing amplitude (larger values of h), the painted potential
better approximates a parabolic potential, but at the cost of losing intensity in the
center of the trap.

This numerical algorithm allows us to modify the geometry and volume of the atom
trap at will. In particular, we numerically calculate a waveform that results in
the harmonic potential used for trapping atoms in our experiment. Additionally,
this waveform allows us to modify the volume of the trap without straying from the
harmonic approximation. Because of this pivotal property we selected this waveform
to be implemented in our laboratory. The experimental results of this technique are
presented in the next chapter.

4.3.3 Paintbrush with inhomogeneous intensity

To solve a more general problem, we will explore the situation where the intensity of
the beam is not the same in every position, as shown in figure 4.8. These irregular-
ities are frequent because the AOM’s efficiency depends on the RF input which, as
we said in section 4.1.1, results in spatial dependence produced by the optical array.
If we calculate the parabolic time-averaged potential using the waveform discussed
in section 4.3.2 for h = 4 but taking into account the paintbrush’s inhomogeneous
intensity, we see a big discrepancy from the target function as shown in figure 4.8.

To solve this problem we developed a method using the following numerical ap-
proach. We first include the positional dependence of the intensity as a factor I(y)
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Figure 4.7: Numerically calculated waveforms (above) that produce parabolic time-
averaged potentials of different widths (below). The resulting waveform is the ob-
tained through the algorithm presented in this section. We calculate the solution
over half a period 0 < 2t/T < 1 and later mirror it over the y-axis. Amplitudes
for all waveforms are given in units of the Gaussian beam waist w0. The solid line
time-averaged potentials are calculated numerically from equation 4.1 while the dot-
ted line potentials are calculated using the delta-paintbrush approximation. This
waveform is of great relevance to us because we use a parabolic potential in most of
our experiments.
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Figure 4.8: A parabolic time-averaged potential (red line below) considering the in-
homogeneous intensity profile of the paintbrush (above). The numerically calculated
parabolic time-averaged potential (solid line) results from the waveform in section
4.3.2 (shown in figure 4.7 for h = 4) but considering the inhomogeneity as pictured
above. The dotted-line is calculated using the delta-paintbrush approximation and
therefore corresponds to the target function g. The inhomogeneous intensity profile
(above) was measured using a probe system.
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in equation 4.5 and obtain

Ī(y, 0, 0) =
2I(y)

T

1

hḟ(t)
, (4.18)

we then normalize I(y) by the maximum intensity I0 in 4.18 and equate this to our
desired function

g(y) =
Ī(y, 0, 0)

I0

=
2

T

I(y)

I0

1

hḟ(t)
. (4.19)

Rearranging terms, using y = hf(t), integrating over t and introducing the normal-
ization constant c we get

c

∫ t

0

I0

I(hf(τ))
g(hf(τ))hḟ(τ)dτ = c

∫ y=hf(t)

−h

I0

I(Y )
g(Y )dY =

2

T
t. (4.20)

As the intensity I(y) is a non analytical function because it is measured directly
from the experiment, the best approach to solve the integral 4.20 is numerical, using
a similar algorithm as the one obtained in section 4.3.2

gs=g/I

for i in [0,...,N]

T’[i]=integrate(gs,-h,Y[i])

end

T=T’/T[N]

where gs is simply the target function g divided by the normalized calibration func-
tion I, which is measured experimentally (upper half of figure 4.8). The integration
runs over the full interval Y=[-h,...,h] because the inhomogeneous intensity pro-
file is not symmetric and therefore we cannot multiply the resulting function f by
h for the interval (−1, 1) as in figure 4.7.

After we apply this algorithm to the measured calibration curve I(y)/I0 shown in
the upper panel of figure 4.8 we obtain waveform f(t). This function is plotted with
a solid line in figure 4.9, in contrast to the uncorrected function plotted with a black
dashed line. The TAP obtained from this waveform is plotted in the lower panel of
figure 4.8 with a solid line. Notice the center of the corrected TAP is very close to
the center of the target function, which itself is plotted with a dotted-line.

4.4 Modulation dependent trap depth and fre-

quencies

Some important characterizations and measurements should be performed before
testing the TAP technique on the atoms.
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Figure 4.9: A parabolic time-averaged potential (red line below) calculated using
our new waveform, which corrects for the inhomogeneous intensity of the paintbrush
(red line above). The dotted-line above is the numerically calculated waveform in
section 4.3.2 (shown in figure 4.7 for h = 4) associated to the target function g
(dotted-line below). The dotted-line below is calculated using the delta-paintbrush
approximation and therefore corresponds to the target function g. The solid-line
above is the numerically calculated waveform using the algorithm presented in this
section.
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For example, as we can see in figure 4.7, the central intensity of the parabolic TAP
is inversely proportional to the modulation amplitude h. Therefore, both the depth
U0 and the frequencies ωi of the trap (eq. 2.73) change because they are intensity
dependent.

In order to conduct future experiments, such as the thermodynamics of global vari-
ables proposed by V. Romero [32, 33, 34], we would like to precisely know said
dependence as a function of the modulation amplitude of the Gaussian beam paint-
brush.

Since the production of a TAP for the Gaussian beam is a numerical procedure (fig.
4.7), we do not have access to an analytical expression from which to calculate them
directly. Instead, we can extract these quantities from the numerically calculated
profiles.

We can use the numerically calculated peak value of the intensity to determine
I0(h/w0), and then, by fitting a Gaussian in the neighborhood of y = 0 we can
determine the waist w0(h/w0).

Then, we define the following fractional relations:

QI(h/w0) =
I0(h/w0)

I0(0)
; and Qw(h/w0) =

w0(h/w0)

w0(0)
, (4.21)

which are the normalization of the modulated intensity I0(h/w0) and waist w0(h/w0)
between its initial values (i.e. with zero modulation). This numerically variables
are plotted with solid lines in figure 4.10.

Figure 4.10:

To connect these values to the depth U0 and the frequencies ωi of the trap (eq. 2.73),
we define the following relations:
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QU(h/w0) =
U0(h/w0)

U0(0)
= QI(h/w0), (4.22)

Qωz(h/w0) =
ωz(h/w0)

ωz(0)
=
√
QU(h/w0) (4.23)

Qωy(h/w0) =
ωy(h/w0)

ω0(0)
=

√
QU(h/w0)

Q2
w(h/w0)

and (4.24)

Qω̄(h/w0) =
ω̄(h/w0)

ω̄(0)
= 3

√
QU(h/w0)

Qw(h/w0)
(4.25)

Note that the trap frequency in x direction is not affected because it corresponds
to the magnetic component of the hybrid trap. Clearly, all the factors must satisfy
Qi(0) = 1.

The trap frequency factor Qωz in z direction is only affected by the decreasing of the
central intensity, which is quantified by the factor QU . The trap frequency factor
Qωy in the y direction is determined by the composition between the decreasing of
the central intensity and the waist increasing quantified by the factors QU and Qw

respectively.

The frequency factor Qω̄ is the reduction factor for the geometric mean frequency
ω̄. An important observation has to be made here. We can see that to change the
geometric frequency trap ω̄ (related with volume) we have two parameters, QU and
Qw. Before TAP, the only free parameter to change ω̄ was the power, i.e. the trap
depth related with QU . Now we have an extra parameter, the modulation, related
with Qw, that allows us to have more trap control. We return to this discussion at
section 5.2.3.

All these frequencies, which are plotted with solid lines in figure 4.11, are calculated
using the numerically values QI(h/w0) and Qw(h/w0).

We want to compare this numerically calculated functions with those of the delta-
approximation TAP. Using the peak value and the harmonic expansion near y = 0
of the expression g(y) =

√
π
2

3w0

4h
(1− (y/h)2)Θ(1− |y/h|), calculated in section 4.3.2

for delta-approximation, it can be shown that

qU(h/w0) =
U δ(h/w0)

U0(0)
=

√
π

2

3w0

4h
,

qωz(h/w0) =
ωδz(h/w0)

ωz(0)
=

√√
π

2

3w0

4h
,

qωy(h/w0) =
ωδy(h/w0)

ω0(0)
=

√√
π

2

3w3
0

4h3
and

qω̄(h/w0) =
ω̄(h/w0)

ω̄(0)
=

3

√√
π

2

3w2
0

4h2
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Figure 4.11:

where U δ(h/w0) is the trap depth and ωδi (h/w0) are the trap frequencies in the delta-
approximation for TAP with amplitude h. The frequency factor qω̄ is the reduction
factor for the geometric mean frequency ω̄.

This fractional variables are plotted with dotted lines in figures 4.10 and 4.11. There
is shown the comparison between the delta-function and the numerical calculated
Gaussian paintbrushes. As we expected for TAP amplitudes much greater than the
beam waist h � w0, the depth and frequency of the trap in the painted direction
will approach those of the delta-approximation TAP as discussed in section 4.3.2.

4.5 Experimental implementation

After the theoretical treatment to obtain the desired geometry for the ODT, the
next step is to implement the optical setup and the control system for experiment
automation.

4.5.1 Optical setup

The detailed ODT optical setup is already presented at figure 3.6. The upper part
of figure 3.6 shows how to prepare the laser beam with the required characteristics
to produce the ODT. This part is schematically equivalent to all components before
the f1 lens at figure 4.2. The lower part of figure 3.6 shows how to produce the ODT
using the focusing L7 lens. This part is schematically equivalent to the focusing f1

lens in scheme at figure 4.2. There is some comments and technical details about
this optical array which we want to discuss here for future references from lab users.

For example, the telescope formed by the two lenses indicated as L1-L2 is constructed
to obtain a collimated beam around 800 µm radius, which is the optimum radius
for the AOM input beam. The L3 lens is centered to the first diffracted order and
it has a tiny inclination to ensure the lens is perpendicular to the first diffracted
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order. Additionally, this L3 lens was finely placed at a focal distance from the AOM
to ensure that the angular displacement θB(t) can be transformed into a transverse
displacement d(t). The way to align this critical property was varies the L3 lens
position until the zeroth and first diffracted order travel parallel the longest possible
distance.

The mirror which separates the zeroth and first diffracted order is almost at the
focus of the L3 lens. This is placed in this position because there the beams are the
thinnest and easiest to separate. The two telescopes formed by L3-L4 and L5-L6
are necessary to collimate and magnified the first diffracted order from around 800
µm to 2750 µm radius. This magnification is in order to achieve with the L7 lens,
the last lens, a beam waist around 50 µm at the focus, ideal for our ODT.

Just as technical comment, perhaps the optical setup at figure 3.6 looks pretty
simple, it has a high degree of difficulty. Their complexity remains at the necessity
of place all the lenses after the AOM at 2f configuration, which means that the
distance between them is equivalent to the sum of their focal distances. This is
necessary (besides the collimation) to ensure that the angular displacement θB(t)
can be transformed into a transverse displacement d(t). Therefore, all the optical
lenses after the AOM become positionally fixed, and then the beam focus after the
L7 lens, which forms the ODT, becomes also fixed. Thus we need to put the AOM
at some position to ensure the ODT is near the center of the magnetic Feshbach
fields, to create the hybrid trap described at section 2.3.3. A finely adjustment
to center perfectly the ODT with magnetic Feshbach fields can be done using the
translational stage where the L7 lens is mounted.

4.5.2 Control system

The TAP technique need to be controller by our control system which handles all
the experiment. For a given painting function f(t), the only two free parameters
that we can change are the amplitude h and the center position.

An important feature not discussed previously is the possibility of moving the po-
tential center finely along the y−direction. Despite this was not explicitly said at
section 4.1.2, the Bragg angle without modulation θB,0 after the lens correspond
to the center position of the painted potential d0. Then, the d0 “constant” for the
potential center can be finely moved.

Other way to see this concept is that every value of the waveform f(y) maps into a
specific beam position. For instance, let’s consider the double well potential (fig.4.4).
If we keep only the high value of the square signal, the trap is at the right; otherwise
if we keep the low value, the trap is at the left. Therefore, adding a constant signal
(or offset) to a waveform is equivalent to shifting the center of the time-averaged
potential.

Then the scheme for the control system is presented at figure 4.12. The radio
frequency (RF) signal is produced by a voltage-controlled oscillator (VCO), then
this RF signal is amplified to 14 W for the AOM. The RF signal generated by the
VCO can be controlled by the amplitude (AM) and frequency (FM) channels. As
we are interested to change the frequency ωRF (t), the channel which we need to
control is the FM.
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Figure 4.12: Scheme of the experimental control system for TAP technique.

The signal which goes to FM channel is prepared as follows. The painting function
f(t) is pre-charged (using the code presented at B.1) in the Arbitrary Wave Gen-
erator (AWG) Standford DS345, then its amplitude h is controlled by the MOD
IN channel in the AWG. Then this signal is added with a voltage OFFSET, which
control the center potential position, and then this complete signal is sent to the
FM VCO channel. The special electronic adder was designed and developed in the
Electronic Lab by Carlos Gardea, because it needs to add high frequency signals.

In this way, the TAP technique is just controlled by two voltage signals, the h
amplitude and the offset. These signals are programmed into the central control
system which handles all the experiment.



Chapter 5

Results

After the construction of the experimental setup, some important characterizations
and calibrations should be performed before testing the TAP technique on the atoms.
We need to be able to fully characterize the beam, with and without modulation.
The procedure to characterize the beam is presented in the section 5.1. Next, in
section 5.2 we finally test the beam on the atoms. Some important technical pa-
rameters can only be determined once the atoms are transferred into the trap, such
as the minimum modulation frequency to the TAP technique. In addition, the pro-
tocol to measure the trap frequencies ωi in all directions is presented. This helps to
characterize the dependency between the trap frequencies ωi and the modulation,
which must agree with our numerical calculations. Finally, it is also discussed how
a TAP expansion can be used as an additional fine evaporation curve for cooling,
allowing an additional experimental parameter for the generation of quantum gases.

The thermodynamic theory of global variables [32, 33, 34] establishes that the vol-
ume can be taken as the inverse of the cube of the geometric mean of the trap
frequencies V = 1

ωxωyωz
. A first insight of this proposal by means of an experiment

is presented in section 5.3. Basically, we achieve the BEC phase transition by chang-
ing the volume while keeping the temperature constant. This is interesting, since in
the vast majority of experiments with ultracold atoms around the world, quantum
degeneracy is achieved by lowering the value of the temperature as much as possible.

The last section 5.4 is devoted to present the flexibility of TAP to generate trapping
potentials. There, we present an implementation of a the double well potential and
how it can be used to produce a matter wave diffraction pattern, an important
indicator of the onset of the quantum regime.

5.1 Characterizing the beam

The first step is to characterize the beam when no modulation is employed. This
consists in measuring the beam intensity profile as it propagates, with special em-
phasis at the focus position. To make this discussion easier, let us consider that
the beam propagates along the x-direction, so each measurement of the intensity
profile at a given x is a function of y and z. From this profile, we extract the beam
waists ωy and ωz along these two directions at each x-position. In other words, we

101
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measure ωy = ωy(x) and ωz = ωz(x). In an ideal circular gaussian beam, we have
that ωy(x) = ωz(x) at every value of x. Which means that the focus position, i.e.
the x-position in which ωy and ωz reach a minimum value, is the same for both of
them. However, in practice this is not the case: the beam is imperfect and little
misalignments can accumulate as the beam propagates across the several employed
optical components such as mirrors and lenses. This might derive in the presence of
two focal points: an x-position where ωy reaches its minimum value, and a different
one for ωz. In this case, it is said that the beam is “astigmatic”, an optical aberra-
tion that we want to avoid because it significantly decreases the trapping efficiency
of the ODT.

Figure 5.1: The radius w(x) of a focused Gaussian beam as a function of the distance
x along the beam (equation 2.70). This is a no-scale 3D version of the right panel
of figure 2.10.

In subsection 5.1.1 we discuss how to eliminate the astigmatism from our beam. Af-
ter solving this problem, we show that, in a well-aligned optic setup, the modulation
does not introduces any astigmatism into the beam.

In subsection 5.1.2, we discuss that the TAP technique allows to finely move the trap
along the y-direction. We use this to calibrate the conversion between modulation
voltage to modulation displacement.

Finally, in subsection 5.1.3, we measure the waist and intensity dependency on the
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modulation. We find that our measurements agree with our numerical calculations
presented in section 4.4.

5.1.1 Astigmatism

The characterization of the intensity profile of the beam as a function of x is done in
a tomographic fashion. We use a CCD camera (Thorlabs DCC1645C) mounted on
a translational stage to image the beam at different positions along its propagation
direction. To do this, we set the power of the laser at a very low value to prevent
any damage on the CCD. This does not alter in any way our measurements because
the beam waists do not depend on the laser power. Thanks to the translational
stage, we can move the CCD and obtain several “slices” of the beam along the x
direction. So we can fully characterize the focus of the beam.

After obtaining about 50 of these slices, we save all images in a computer and use
a Python script to fit a 2D Gaussian function in every picture. This gives us, for
each x-position, the beam waist along y and z axes, in a similar way as shown in
the right panel of figure 2.10. This reconstruction help us to determine whether the
beam is astigmatic.

Figure 5.2: Beam waists of an astigmatic beam along propagation direction. The y-
focus is at 12.61(39) mm and the z-focus at 14.39(14) mm. This give us a difference
of around 1800 µm, big enough for preventing efficient trapping. At their respective
foci, the beam waists are ωy = 63.1(26)µm and ωz = 64.6(26)µm. The uncertainty
associated to the data is given by the function scipy.optimize.curve_fit used in
the Python fitting program, however, the error bars are not visible at the scale of
the graph.

For example, the beam characterized in figure 5.2 presents almost 1800 µm of astig-
matism, this means that the distance between the y and z foci is 1800 µm. This
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difference is big enough to prevent an efficient optical trapping and we lost nearly all
the atoms during the transference process between gray molasses and ODT trapping.

Figure 5.3: Beam waists of a non-astigmatic beam along propagation direction.
The y-focus is at 10.89(29) mm and the z-focus at 10.73(89) mm. This give us
a difference of around 160 µm, this small value of the astigmatism can be ne-
glected. At their respective foci, the beam waists are ωy = 48.8(26)µm and
ωz = 62.9(26)µm. The uncertainty associated to the data is given by the func-
tion scipy.optimize.curve_fit used in the Python fitting program, however, the
error bars are not visible at the scale of the graph.

To get rid of this problem we have intensively worked in improving the quality of the
alignment of our ODT optical setup, trying numerous strategies. At the end of this
process, we found out that we could eliminate the astigmatism by introducing a little
misalignment on the beam by slightly tilting, in a very controlled fashion, one of the
lenses of the setup (labeled as “L6” in fig. 3.6). To do so, we mounted such lens in an
opto-mechanical mount, which allows micrometric control. The result is presented
in figure 5.3. As we can see, the beam is not symmetrically cylindrical, because
the beam waists along y and z directions differ, respectively being 48.8(26) µm and
62.9(26) µm. This asymmetry is not an ideal condition, however, it completely
solves the astigmatism problem and does not represent any real disadvantage in the
production of the ultracold sample.

Up to this point, we have characterized the beam without introducing the modu-
lation. The next step is to characterize the beam at different values of modulation
amplitude to ensure that our TAP technique does not introduce further misalign-
ment or astigmatism. It is convenient to remember that the modulation is performed
along the y-direction.

The result, after an exhaustive study, is that the astigmatism remains very small
and nearly constant for all the modulation conditions of interest.
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Figure 5.4: Beam waists of a non-astigmatic modulated beam along propagation
direction. The value of modulation is 35.3 µm. The x-focus is at 11.14(51) mm
and the y-focus at 11.00(14) mm. This give us a difference of around 140 µm, this
small value of the astigmatism can be neglected. At their respective foci, the beam
waists are ωx = 64.3(26)µm and ωy = 64.5(26)µm. The uncertainty associated to
the data is given by the function scipy.optimize.curve_fit used in the Python
fitting program, however, the error bars are not visible at the scale of the graph.



106 CHAPTER 5. RESULTS

This allows us for example, to use the modulation to compensate the asymmetry
of the not-modulated beam. The result of modulating 35.3(26) µm the beam is
presented in figure 5.4, where the beam is symmetric with a beam waist around 64
µm for the two directions.

5.1.2 Offset

An important feature discussed previously at section 4.5.2 is the possibility of moving
the potential center finely along the y−direction.

We can characterize this displacement using the tomographic technique described
in the previous section. We place our CCD camera at the focus position and take
an image for each offset voltage. Then, from our Gaussian fit we extract the central
position of the beam.

Figure 5.5: Calibration of the offset voltage versus the position of the cen-
ter of the beam. The center of the beam moves 140 µm per offset Volt, ap-
proximately. The uncertainty associated to the data is given by the function
scipy.optimize.curve_fit used in the Python fitting program, however, the error
bars are not visible at the scale of the graph.

The results of offset voltage versus the center position of the beam are presented in
figure 5.5. This calibration is very useful to convert modulation voltage into beam
displacement h. From this point on, all the results we present use this calibration
curve.

It is also important to mention that the capability of changing the trap position is
also very important to measure the trap frequency ωy. This is done by abruptly
changing the trap frequency by a small quantity. In consequence, the atoms are
“pushed” from the center and start to oscillate at the corresponding frequency (sec.
5.2.2). Finally, we can use this to calibrate the pixel size of the imaging system
along the vertical direction.
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5.1.3 Intensity and waists modulation-dependency

As discussed in section 4.4, the intensity at the center of the parabolic TAP falls
depending on the modulation amplitude h. Therefore, the trap depth U0 and the
trap frequencies ωi (eq. 2.73) change because they are intensity-dependent.

At this point we are able to characterize the modulated beam. These experimental
results are compared with the numerical calculation presented in section 4.4.

Figure 5.6: Images of the beam at focus, with their corresponding Gaussian fit. On
the left we have the unmodulated beam, and on the right we have the beam with the
maximal achievable modulation (about 140 µm). We are capable to increment the
beam waist at y−direction around 3 times its original size. The error associated to
the data is given by the function scipy.optimize.curve_fit used in the Python
fitting program.

Again, we place the CCD camera at the focus position and image the beam for each
value of the modulation amplitude. Next, we apply to each image a Gaussian fit
and extract from it the maximum intensity, and the y− and z− waists.

As an example, in figure 5.6 we present two images of the beam at focus for two
different values of the modulation amplitude.

The fractional amplitude reduction and the waist increment are shown in figures
5.7 and 5.8 respectively, showing a good agreement with the numerical calculations
(dotted lines) previously presented in fig. 4.10.

Additionally, we observe that at certain amplitude modulation (35.3 µm), both
waists are equal, so the trap becomes radially symmetric. Hence, this modulation
becomes our new trap standard for loading the atoms in our experiments.
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Figure 5.7: Measurement of the evolution of the average normalized intensity in the
centre of the beam (dots) with increasing modulation amplitude h. The dotted line
is the numerical calculation presented in section 4.4. The error bar (smaller the dot)
associated to the data is given by the function scipy.optimize.curve_fit used in
the Python fitting program.

Figure 5.8: Measured waist in y−direction (blue dots) and z−direction (orange dots)
of the parabolic TAP as a function of the modulation amplitude h. The dotted line
is the numerical calculation presented in section 4.4. The error bar (smaller the dot)
associated to the data is given by the function scipy.optimize.curve_fit used in
the Python fitting program.
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5.2 Using the atoms as a probe

After the beam characterization, we are finally able to employ it to trap the atoms
in it. After aligning the beam at the center of the atomic cloud, we can follow the
experimental procedure presented in section 3.2.2 to obtain the quantum sample.

After loading the MOT, we apply D1 cooling process and during it we ramp the
ODT power from zero to 150 W in 7 ms. Once the ODT power has reached its
maximum value, we ramp the Feshbach magnetic field to 832 G in 50 ms. At this
value of the magnetic field, evaporative cooling is performed by ramping down the
ODT power following the evaporation ramps shown in figure 3.11 (blue curves).

At the end of the evaporative cooling we adiabatically ramp (300 ms duration) the
Feshbach field to 690 G in order to produce molecular BEC of 6Li. We are interested
to work in this chapter with the BEC phase because it is the easiest to detect and
diagnose.

After producing the BEC in the TAP, we need to determine which is the minimum
modulation frequency at which the atoms really interact with a time-averaged po-
tential. For too low modulation frequencies, the atoms won’t “see” a static potential,
but a dynamic one. This is presented in section5.2.1.

Next, we present in section 5.2.2 a technique to measure the trap frequencies along
each direction. Additionally, this technique allows us to verify that the ODT focus
is truly at the center of the magnetic Feshbach field.

In section 5.2.3 we discuss the dependency of the trap frequencies on the modulation.
We show that our measurements agree with the numerical calculations presented in
4.4. The capability of varying the trap frequencies is important to perform ex-
periments on thermodynamics, specially within the context of the theory of global
variables, which defines a global volume parameters as the inverse of the cube of the
geometric mean of the trap frequencies V = 1

ωxωyωz
.

Finally, we show how the TAP technique can be used to finely expand the volume
of the trap, contributing to the evaporative cooling process. In this way, we have an
additional experimental parameter for the generation of quantum gases. As a plot
twist, in the data presented at Chapter 3 (for example, fig. 3.12) we were already
using the TAP parameters to improve the evaporation ramp. Additionally, we use
the modulation to make a cylindrical symmetric trap.

5.2.1 Frequency modulation

One of the first tests to probe the TAP on the atoms is to determine the modulation
frequency above which the TAP technique really works as a time-average potential
for the atoms. To do so, after producing the quantum sample, we change the
modulation frequency and measure the number of atoms remaining in the trap.
We observe an abrupt change of the atom number at 10 kHz, which is the frequency
correspond to the trap frequency expected at high power, discussed at section 3.2.2.
Below that frequency the modulation heats the sample and the atoms escape from
the trap.

For very large modulation frequencies the bandwidth of the employed electronics
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and the wave generator become a limitation, so that the safe zone were we decided
to maintain the modulation frequency is at 200 kHz.

5.2.2 Measuring the trap frequencies

For measuring the trap frequencies, we use the atoms as a weight in a simple pen-
dulum. We give the atoms an initial ”kick” to transfer momentum to them. Then,
since the ODT is harmonic, the sample oscillates sinusoidally around the center of
the trap. We track the center of mass of the cloud by taking a series of images at
different times, appealing to the repeatability of the experiment.

Just as a technical comment, when the ODT is not centered with the magnetic
curvature of the Feshbach field, we observe an undesired oscillatory movement along
the axial direction. By moving the translational stage where the last lens is attached
(labeled as “L7” in fig. 3.6), we finely center the ODT with the Feshbach field until
the oscillatory movement along the axial direction is suppressed.

The initial “ kick ” is different for each direction, so we divide the procedure for the
different axes as described below.

Trap frequency in the z-direction

For measuring the frequency along the gravity direction, we turn off the ODT (50
ms after finishing the evaporative process) to leave the atoms to fall freely. After
1 ms of free fall, we turn on the ODT. Next, we wait 5 ms after which a series of
images of the cloud in situ are taken using the horizontal imaging system. Finally,
in each image the center of mass of the cloud is determined. The measurement is
concluded after 4 or 5 oscillation cycles.

We plot the z-position of the sample as a function of time. We fit the data with a
sinusoidal function to obtain the trap frequency. The oscillation is presented at the
upper panel of figure 5.9, where the ODT beam has 35 mW of power; with no TAP
modulation, a frequency of ωz = 2π × 185.33(310) Hz is obtained.

Trap frequency in the y-direction

For measuring the frequency along the modulation direction, we abruptly move by
50 µm the ODT center position along the y-direction (50 ms after finishing the
evaporative process), 1 ms later we bring the trap back to its original position. This
is done using our TAP technique by just changing the value of the offset of the
modulation signal (see section 5.1.2). We then wait 5 ms after which a series of
images of the cloud in situ are taken using the vertical imaging system. Finally,
in each image the center of mass of the cloud is determined. The measurement is
concluded after 4 or 5 oscillation cycles.

We plot the y-position of the sample as a function of time. We fit the data with a
sinusoidal function to obtain the trap frequency. The oscillation is presented at the
middle panel of figure 5.9, where the ODT beam has 35 mW of power; with no TAP
modulation, a frequency of ωy = 2π × 223.95(321) Hz is obtained.
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Figure 5.9: Center of mass position at z−,y− and x−direction, from the upper to the
lower panel respectively, after an initial displacement from the center of the ODT.
The centers of mass are extracted from a series of absorption images in situ of the
6Li atoms. The oscillation is fitted with a sinusoidal function, giving the frequencies
ωz = 2π×185.33(30) Hz, ωy = 2π×223.95(32) Hz, and ωx = 2π×10.75(28) Hz. The
characteristics of the ODT beam is 35 mW of power without TAP modulation for
the ωz and ωy and 90 mW of power with TAP modulation h = 2.5 for the ωx. The
error bar associated to the data is given by the standard deviation for 5 independent
measurements, such bars are not visible at this scale.
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Trap frequency in the x-direction

For measuring the frequency along the propagation direction, we abruptly turn on
the MOT coils at 1 A during a period of 2 ms after which they are turned off again.
This is done 50 ms after finishing the evaporative process. We then wait 5 ms and
next a series of images of the cloud in situ are taken using the vertical imaging
system. Finally, in each image the center of mass of the cloud is determined. The
measurement is concluded after 3 or 4 oscillation cycles, in this case, the oscillation
period is longer than in the previous cases.

We plot the x-position of the sample as a function of time. We fit the data with
a sinusoidal function to obtain the trap frequency. The oscillation is presented at
the lower panel of figure 5.9, where the ODT beam has 90 mW of power; with a
TAP modulation amplitude of h = 2.5, a frequency of ωx = 2π × 10.754(28) Hz is
obtained.

At this point, we emphasize that this trap frequency only depends on the curva-
ture of the Feshbach magnetic field, as discussed in section 2.3.3. Indeed, we have
experimentally confirmed that ωx remains constant for any ODT/TAP parameters
as long as the magnetic field is unchanged. The measurements reported in fig. 5.9
were all taken at a Feshbach field of 690 G.

5.2.3 Changing the volume with TAP

At this point, we can use the TAP technique to change the volume of the atomic
sample. To do so, we keep the ODT power constant (at approximately 32 mW),
and then we change the amplitude of the modulation. We take absorption images of
the 6Li2 BEC in situ employing the vertical imaging system at different modulation
amplitudes, we observe that the trap geometry change as we increase the modulation.
This change is shown in figure 5.10.

Figure 5.10: Absorption images of the 6Li2 BEC in situ using the vertical imaging
system at different modulation amplitudes. The images from the left to the right
correspond to modulation amplitudes of 0, 28.4, 56.2, 83.6, 111.5 and 138.8 µm,
respectively.
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To quantitatively characterize the change in the sample volume we measure the trap
frequencies ωz and ωy as a function of the amplitude of the modulation. This is done
using the protocol describe at section 5.2.2.

Figure 5.11: Measured ODT trap frequencies for different modulation amplitudes
(upper panel) and its correspondent calculated geometric mean frequency (lower
panel). The error bar associated to the data in the upper panel is given by the
function scipy.optimize.curve_fit used in the Python fitting progra, in the lower
panel the error is calculated by distribution. The theoretical curves (solid lines) come
from the equations presented in section 4.4.

In figure 5.11, we compare the measured trap frequencies (upper panel) and its
corresponding geometric mean frequency ω̄ (lower panel) with those predicted by
the numerical model for TAP frequencies presented in section 4.4.

It is worth remembering that this technique can also be used not only to vary the
sample volume but also as a fine control in the evaporative cooling process. The
decreasing of the center trap intensity (fig. 5.7) during the modulation results into
the decreasing of the trap depth, lowering the temperature of the gas by evaporative
cooling. In fact, this is already used in the data presented in Chapter 3. We already
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use TAP to improve the evaporation ramp, for example, in the absorption images
presented in fig. 3.12).

Since the thermodynamic global variable theory establishes that the volume depends
on these frequencies through the expression V = 1

ω̄3 , decreasing the trap frequencies
and trap depth due to modulation is equivalent respectively to increase the volume
and decrease the temperature simultaneously.

An important feature of TAP is that it have decoupled the trap frequencies values

from the trap depth. This can be seen in expression Qω̄(h/w0) = 3

√
QU (h/w0)
Qw(h/w0)

(4.25)

presented in section 4.4. We can compensate the intrinsically trap depth decreasing
factor due to modulation QU(h/w0) by increasing the power beam.

Compensating QU(h/w0) for each increasing modulation allows us, for example, to
decrease the trap frequencies at the same trap depth. This is translated to increase
the sample volume (due to V = 1

ω̄3 ) maintaining its temperature and atom number
constant.

We develop an experiment using this isothermal expansion (or compression if we
reverse the process) to achieve a BEC phase transition maintaining the temperature
constant, presented in the next section. For this reason, the TAP technique is a
useful instrument to explore the thermodynamic properties of ultracold gases. We
go a little deeper into this aspect in the next section.

5.3 BEC phase transition at constant T

To show the usefulness of the TAP, we carried out an experiment whose objective
is to observe the BEC phase transition by increasing the density (decreasing the
volume) while maintaining the temperature and number of atoms constant.

This makes sense, since as we discussed before at equation (1.8), the important
variable that defines the quantum phase transition is the phase space density, ρ =
nλ3

T , where λT is the de Broglie thermal wavelength associated to the atoms, and n
the atom density. The PSD measures the atom number inside a cube whose side is
λT . When ρ > 1, i.e. low temperature and large density n, the system is degenerate.

Then, working theoretically with an ideal gas of bosons harmonically trapped [74],
we find that the average number of particles is N = (kBT/~ω̄)3 g3(z), with g3(z) the
Bose function (polylogarithm) and z = eµ/kBT the fugacity. Imposing that at the
transition, the condensed part is zero and the fugacity z = 1, we get an expression
for the critical temperature Tc for the phase transition between the ideal gas and
ideal Bose gas is expected in a harmonic potential

kBTc =

(
N

ζ(3)

)1/3

~ω̄ ≈ 0.94N1/3~ω̄, (5.1)

with ζ(3) ≈ 1.202 the Riemann function valued at 3.

This experiment presents a new perspective in the way that instead of lowering the
temperature until Tc, as is usually done in the vast majority of the quantum gas
experiments, we increase the trap frequencies geometric mean until a critical value
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Figure 5.12: A schematic diagram to achieve the BEC phase transition at constant
temperature. The red arrow is equivalent to an isothermal compression process.
The blue line is the expected temperature at which the phase transition of an ideal
Bose gas occurs in a harmonic potential.

ω̄c. This, under the global variable theory, is equivalent to decrease the volume
V = 1

ω̄3 , and therefore it is a compression where the density n increase.

Therefore, if we make a process following the red arrow in figure 5.12, which is equiv-
alent to an isothermal compression process, we eventually cross a critical geometric
mean frequency ω̄c at which the quantum degenerancy is reached and the BEC phase
transition is observed. The critical geometric mean frequency is the result of solving
for ω̄ from the linear relation (5.1) with a experimental temperature Texp.

Then, we first need to find the experimental process, the isothermal compression (red
arrow), which maintain temperature and number of atoms constant. This process
is presented in section 5.3.1 and we show the corresponding results in section 5.3.2.

5.3.1 Isotherms

Despite we find at section 5.2.3 that the frequencies decreases as the amplitude mod-
ulation increases, the trap depth also decreases and consequently the temperature
decreases (section 2.3.4). Then, the TAP technique at constant power of the ODT
laser beam inevitably reduces the sample temperature.

Since we want to keep the temperature and number of atoms constant to achieve
an isothermal compression, we must compensate the trap depth reduction by in-
creasing the power of the ODT laser beam. We already know how much we need
to compensate the power due to the result shown in the figure 5.7. For example,
if we modulate 80 µm the trap, we can estimate that it is necessary to double the
power to have the same trap depth U0 as the original unmodulated beam. Same
trap depth is equivalent to have the same final temperature.

Therefore, the way to proceed is to select a modulation amplitude, then evaporate
for different final ODT powers around the expected value given by the figure 5.7.
At each final power the sample temperature and atom number are measured, as
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Figure 5.13: Sample temperature and atom number for different evaporation final
ODT powers, for a modulation of 70 µm. These are extracted from absorption
images after 20 ms of TOF using vertical imaging. As expected, the number of
atoms and the temperature are proportional. The error bar associated to the data
is given by the standard deviation for 3 or 4 measurements per power.

presented in fig. 5.13.

Figure 5.14: The BEC temperature for different evaporation final ODT powers, for
10 different modulation values. These are extracted from absorption images after 20
ms of TOF using vertical imaging. The black dotted line is the desired temperature
50 nK, at which we want to maintain the compression. The set of ODT powers
at which the intersection between coloured dotted lines and black dotted line takes
place, makes up our isothermal compression. The error bar associated to the data
is given by the standard deviation for 3 or 4 measurements per power.
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After obtaining this curve for ten different modulation amplitudes, we select the
common temperature for all the amplitudes, and practically the same atom number
4.0×104(3). We select for this experiment the temperature 50(6) nK. Then for each
modulation amplitude we search in its respectively curve, shown in figure 5.14, the
corresponding ODT power at which the sample temperature is 50 nK (black dotted
line).

Therefore, with this information was possible to construct an isothermal compres-
sion, shown in figure 5.15, given by a column of ten experimental data pairs, modu-
lation and beam power (h, P ). Using this compression we achieve isothermal BEC
phase transition, shown in figure 5.15

Figure 5.15: Experimental isothermal compression. The green data points has the
ω̄ measured using the method described in section 5.2.2. The orange data points
has the ω̄ calculated using the laser power beam and the numerical calculation
represented by green line in figure 5.11.

5.3.2 Transition

We carry out an experiment to achieve a isothermal BEC phase transition following
an isothermal compression process composed by 10 different ω̄, presented in the past
section. The BEC phase transition is shown in figure 5.12.

The only thing left to measure for this isothermal process is some of the trap fre-
quencies. We follow the procedure described in section 5.2.2 to measure the trap
frequencies at all the directions. It is only possible to measure the trap frequen-
cies for the three last modulation amplitudes because since we are far from the BEC
transition, the sample is a rather large thermal cloud whose center of mass is difficult
to track.

The geometric mean ω̄ are calculated for the three last modulation amplitudes, and
they are indicated in their corresponding absorption image in figure 5.11.
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Figure 5.16: Absorption images of 6Li atomic samples after evaporative cooling (left
panel) and their corresponding integrated density profiles (right panel, optical den-
sity in arbitrary units) as the volume decreases, at constant temperature 50.0(3)
nK and constant number of molecules 4.0×104(3). (a) Thermal gas where the black
dotted line is a Gaussian fit. (b) A gas starting with the transition, showing a bi-
modal Gaussian-parabolic distribution marked by the orange line. (c) Bose-Einstein
molecular condensate, the parabolic distribution is dominant to the Gaussian in the
bimodal and the Gaussian distribution decreases appreciably. The color gradient at
absorption images corresponds to the optical density of the gas. All images have 15
ms TOF.
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5.4 TAP flexibility

As we discussed in section 4.2, it is possible to use the TAP technique to create
other trap geometries, for example a double well potential, a nearly box potential,
or even a constant-gradient potential.

As an example, we have selected to show here some results for the double-well
potential. The waveform signal to create this potential is a square signal. This
potential geometry was tested and characterized, and we show the results in in
figure 5.17.

Finally, if we left the two quantum sample at time of flight, they interact, showing
a matter wave diffraction pattern. This help us to conclude that our sample is in
quantum regime.

To summarize this section, we must mention that all these results show the great
flexibility and usefulness of the TAP technique, making it an important tool for
carrying out all of our experiments. Indeed, in section 6.2.1 we will present another
application of this technique in the generation and study of collective excitations in
our sample.
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Figure 5.17: (a) Scheme that illustrates how to generate a double well trap from a
square signal. (b) The density profile, at optical density arbitrary units, for mod-
ulation of 0.2 V and 0.8 V from the left to the right respectively. The distance
between the double well increase as we increase the modulation voltage. (c) The
characterization of the distance between the double wells as a function of a control
voltage.
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Figure 5.18: An interference pattern (seen in the density profile) generated by re-
leasing the atoms from the double well trap after a TOF of 5ms.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

The main result of this thesis is the design and implementation of an optical system
that allows the creation of time-averaged optical potentials (TAP) for the capture
and manipulation of 6Li quantum gases.

The basic idea to control the size of the beam waist involves rapidly modulating the
position of the trapping laser beam focus. The timescale of the modulation is much
faster than the radial trap frequency. By doing so the atoms do not respond to the
“instantaneous” motion of the beam and instead “see” a potential proportional to
the time-averaged intensity profile.

The implementation of the TAP technique allows us to create a moldable optical
dipole trap (ODT). In this trap the last stage of cooling is carried out, evaporative
cooling, which allows us to obtain a degenerate ultracold Fermi gas (T ≈ 20 nK).
Evaporative cooling was optimized and complemented with TAP, which is docu-
mented and characterized in this thesis.

The different geometries for ODT that TAP allows us to create are very flexible. By
means of an algorithm that we have developed as part of this thesis, we can generate
arbitrary geometries, from a double well to a box or a harmonic potential.

Once the geometry is selected, it is also possible to scale its dimensions. This allows
us to control the size and volume of the trap. For example, using harmonic geometry,
it is possible to manipulate the ODT waist to go from 40.0(26) µm to 128.6(26) µm
in a fine way.

This is an important characteristic of the TAP technique, because it allows to modify
the size and volume of the trap independently from the trap depth. This provides
an additional tool for thermodynamics experiments. For example, in this work we
have presented the design and study of an experiment whose objective is to observe
the BEC phase transition decreasing the volume, but keeping the temperature and
the number of atoms constant.

This experiment, in addition to showing the usefulness of TAP, offers a new per-
spective on what is usually done in the field of ultracold atoms, where it is the trap
volume, rather than the temperature of the sample, the variable that is controlled

123
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to achive quantum degeneracy. This experiment also give us an insight of how to
measure the volume of a three dimensional harmonic trap.

Additionally, the double-well geometry trap is tested on the atoms, which allows us
to obtain two quantum samples whose separation we can finely control, showing the
versatility of the TAP technique. With this configuration it was possible to carry
out an experiment in which we definitively concluded that we have samples in the
quantum regime. This was achieved by allowing the two samples to interact and
since they behave like matter waves, a diffraction pattern was obtained.

Finally, our setup has also been very useful to perform the experiments that are
currently in progress in our laboratory. In particular, as explained in the following
section, it has played an important role for the production and study of parametric
excitations in the superfluid, since it provides an extra degree of control on the
sample.

6.2 Perspectives

As a first experiment, we have started the study of parametric excitations in the
superfluid, in particular, we have studied the phenomenon of Faraday waves.

In this section we present the type of physics that we want to explore in the Ultracold
Matter Laboratory (LMU) as well as some of the preliminary results of our research
in this direction. In particular, we discuss the role that the TAP technique has
played to obtain these results.

6.2.1 Faraday Waves

Faraday waves (FW) are non-linear parametric excitations in continuous media that
manifest as a spatial and temporal periodic modulation on the density of the fluid.
They were first reported by Michael Faraday in 1831, while studying the emergence
of waves on the surface of liquids in a container forced to oscillate along the vertical
direction [75].

These excitations are parametric in the sense that they are produced by varying (at
a excitation frequency) a parameter of the system, which in consequence changes
the oscillation frequency of the system at other than its natural frequency.

FW are specially interesting in the context of atomic superfluids due to the ex-
traordinary level of control that these systems offer. In particular, the possibility
of controlling the dimensionality of the system and varying the interatomic inter-
actions present interesting scenarios in which this old phenomenon can be explored
under new conditions. Besides, the absence of viscosity causes the collective modes
of oscillation to be much less damped than in normal fluids, making parametric con-
ditions easier to achieve. Moreover, the theoretical framework to describe atomic
superfluids is simpler than its classical counterpart, enabling an easier theoretical
and computational research of this topic.

As we explain below, Faraday waves are connected with microscopic properties of the
system such as the superfluid sound velocity, so FW can be employed to measure this
important quantity. Exploring deeper this phenomenon might provide a new way
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to access more elusive quantities, such as the condensed or the superfluid fractions
in both, Bose and Fermi ultracold systems.

Furthermore, in classical fluids it has been shown that FW can decay into other
excitations, such as shock waves or vortices [REFERENCE]. It would be very inter-
esting if FW could be employed to generate other more complex phenomena, such
as quantized vorticity and quantum turbulence, two topics that we are very inter-
ested in exploring at the LMU. Indeed, on the quantum counterpart, recent work
shows that in BECs there is a connection between Faraday waves and more complex
phenomena, such as highly disordered regimes [76] and granulation [77].

From all atomic superfluids, weakly interacting Bose-Einstein condensates offer the
simplest theoretical description. In this case, the excitations are well described by
theory since most of the system is in the ground state and the produced FW can be
treated as a disturbance [78, 79]. Indeed, FW have already been observed in BECs
in several experiments of which we mention three important examples.

The first observation of Faraday patterns in a weakly interacting BEC was reported
by Engels et al. [80] in 2007, where the wave is generated by modulating periodically
the radial confinement of a cigar-shaped BEC of 87Rb confined in a magnetic trap.
More recently, in 2018, van der Straten et al. [81] have also produced Faraday
waves, in this case in a 23Na cigar-shaped BEC, modulating the radial frequency
of the magnetic trap that contains it. However, these authors do not identify the
excitation as a Faraday wave but as a space-time crystal. Finally, in 2019, Hulet et
al. report on the production of Faraday waves in a cigar-shaped BEC of 7Li [77], in
this case, the excitation is not generated by modulating the trap but the scattering
length of the sample by means of a Feshbach resonance.

All these experiments share two important features:

1. Faraday waves were observed in a cigar-shaped trap.

2. The sample is in a weakly interacting regime, in which the T = 0 Gross-
Pitaevskii equation correctly describes the dynamics of the system.

Concerning the point (1), the cigar-shaped geometry of the BEC is essential for
observing Faraday waves. To obtain this BEC shape, the role of radial symmetry
of the trap is fundamental. This is where the main result of this thesis comes in
handy. The TAP technique is capable of creating a trap with a highly symmetric
radial coordinate. In this way, this thesis makes a fundamental contribution to
perform these experiments in our laboratory.

Regarding the point (2), it is important to mention that there is much less re-
search on Faraday waves in more strongly interacting regimes, such as the BEC-BCS
crossover in Fermi superfluids. Indeed, there are just few theoretical predictions and
simulations of their occurrence along the BEC-BCS crossover [82, 83] and, what is
more, Faraday patterns have never been observed in Fermi superfluids. This opens
up interesting research opportunities.

Indeed, strongly interacting superfluids are much more difficult to model and, in
general, their microscopic properties much more difficult to measure. One of the
main differences between Fermi and Bose superfluids is that in a Fermi system the
microscopic features of the superfluid state depend on the nonlinear term, i.e. on the
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interaction strength. For this reason, it is very important to count with robust and
universal methods to probe the superfluid accross the whole BEC-BCS crossover.

It is in this context that we have chosen the investigation of FW across the BEC-
BCS crossover as one of the first research topics to be addressed at the LMU. We are
particularly interested in exploring the possibility of using these waves to address
microscopic quantities of the system. Indeed, as shown in[82], the superfluid sound
velocity can be extracted from the FW pattern.

To obtain the formation of FW it is necessary to drive the non-linearity of the
system. In ultracold gases, it can be driven either by varying the scattering length,
for example via Feshbach resonances, as experimentally realized by Hulet et al. [9],
or by varying the radial trap frequency as done by Engels et al. [80] and van der
Straten et al. [81].

At the LMU we currently have the ability to produce FW in the deep BEC regime
of the Feshbach resonance. First, we prepare the cigar-shape BEC, where we use
the TAP technique described in this thesis to obtain a highly symmetric radial trap
frequency. Then we drive sinusoidally, with frequency Ω, the power of the laser
around a offset power P0. The radial frequency ωr is proportional to the square
root of the beam power and, under the small perturbation amplitude approximation
α� 0, we get that ωr ∝

√
P ∝ 1 + α cos(Ωt)/2 under a Taylor expansion.

However, by varying the radial trap frequency it’s not entirely clear that the non-
linear term in the Gross-Pitaevskii equation (GPE), given by eq. (A.3), is modu-
lated. It’s not until the 3D GPE is reduced to 1D GPE (section A.5) that we observe
that modulating the radial frequency of the BEC cigar-shape translates into modu-
lating the non-linear term in the 1D effective equation. Another way to understand
this process from a less mathematical perspective is to think that the radial fre-
quency modulation in the 3D GPE creates a volume modulation of the trap, which
in turn modulates the density |ψ(x, t)|2 and therefore the non-linear term.

By setting the excitation frequency Ω to the frequency of the breathing mode [REF-
ERENCIA] and setting the number of excitation cycles to 10, we vary α until we
find the Faraday pattern. As we increas α, we observe overlapping patterns with
different wavelength k.

To describe theoretically the Faraday waves, the process is detailed in the Appendix,
at section A.7. Broadly speaking, after a linear stability analysis the dynamics of
the BEC is mapped from 1D GPE to a Mathieu equation. This Mathieu equation
under the analysis in terms of the Floquet stability theory, gives us values of α and
Ω at which the solutions are or are not stable. When they are presented graphically,
this gives the so-called stability chart with regions of stability and regions of insta-
bility separated by the so-called transition curves. This instability regions where
the solution is unstable, and therefore where the FW exists, form the well-known
“resonances tongues” [84].

When the parameters α and Ω are such that the excitation is unstable and therefore
where the FW exists, the density profile is given by

ρ(x, t) ≈ |ψ0(x)|2 [1 + 2Re[A(t)] cos(kx)]



6.2. PERSPECTIVES 127

where |ψ0(x)|2 is the density under the Thomas-Fermi approximation, similar to eq.
(1.33), summed to a sinusoidal spatial pattern with wavelength k and whose ampli-
tude oscillates Re[A(t)] in time. This result is observed in the first measurements
made in our laboratory (figure 6.1).

Figure 6.1: Absorption image of a Faraday wave in a Bose-Einstein condensate at
690 G.

In the LMU we have produced this Faraday waves for different magnetic field val-
ues, and therefore different scattering lengths, all on the BEC side of the Feshbach
resonance. For some reason that we still do not understand, these excitations have
not been generated in the unitary regime, under any combination of frequency and
amplitude of modulation.

Our optimistic hypothesis is that the specific value of the excitation frequency at the
unitary regime is critical, so perhaps we have not excited with the precise frequency.
Another hypothesis is that the pattern is formed but the non-condensed fraction fills
the pattern’s minima, not allowing us to see the FW on the most strongly interacting
regimes (remember that as the interaction strength increases, the condensed fraction
decreases [REFERENCIA]). Finally, it is important to consider the possibility that
for some unknown reason FW are simply not physically possible at unitarity, we
consider this very unlikely since the patterns are theoretically predicted by two
different models [82, 83].

Consequently, the objective of our research will be to analyze under which conditions
Faraday waves occur. In particular, we will seek to determine if they occur in
the unitary regime and on the BCS side of the Feshbach resonance since, to our
knowledge, they have never been observed in those regions. Likewise, we seek to
build the first experimental Floquet stability diagram (“stability chart”) along the
BEC-BCS crossover. At last, we want to extract the superfluid sound velocity from
the FW pattern. This motivates us to propose the use of FW parametric excitation
as a probe to measure the superfluid sound velocity. We certainly expect to generate
new and exciting results in the near future.
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Appendix A

Faraday Waves

This appendix is a result of a strong collaboration with Victor Manuel Romero
Rochin, with the target to describe theoretically the Faraday waves.

A.1 Dynamical trap

We create a dynamical trap, modulating sinusoidally the power of the laser with
frequency Ω around a offset power P0, following the function

P (t) = P0 [1 + α cos(Ωt)] ,

where α is the amplitude of the perturbation, which is small compared to P0.

As we conclude at the section 2.3.3, we have a 3D harmonic hybrid trap. The axial
trap frequency ωx depends of the magnetic curvature, which for our purposes it is
static and constant. The radial frequency ωr depends proportionally to the square
root of the beam power ωr ∝

√
P . As we are modulating dynamically the power

P (t), then the 3D harmonic trap can expressed as

V (r, x, t) = V0(t) +
1

2
m(ωr(t)

2r2 + ω2
xx

2), (A.1)

with dynamical trap depth V0(t) = V 0
0 [1 + α cos(Ωt)] and radial trap frequency

ωr(t) = ω0
r

√
1 + α cos(Ωt). The terms V 0

0 and ω0
r correspond to the trap depth and

radial trap frequency when there is no perturbation, respectively; therefore using

expressions 2.72 and 2.73 we get V 0
0 = ~γ2

8∆Isat
2P0

πw2
0

and ω0
r =

√
4V 0

0

mw2
0
. With a Taylor

series around small α perturbation, the dynamical radial frequency trap can be
approximated by ωr(t) ≈ ω0

r [1 + α cos(Ωt)/2].

A.2 Weakly interacting Bose gas

As we discuss in section 1.3, the BEC can be described by a wave function Ψ(r, t)
which solves the Gross-Pitaevskii equation (GPE), given by eq. 1.30. At this case,
as the potential now is time-dependent, the expression becomes
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i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + V (r, t) +

4π~2add
m

|Ψ(r, t)|2
)

Ψ(r, t). (A.2)

with a normalization condition N =
∫
|Ψ(r, t)|2 dr with N the total particles number

in the gas and m the mass of the dimer. This differential equation looks similar to
the Schrödinger equation with the addition of the interaction term g|Ψ(r, t)|2 with

g = 4π~2add
m

, which is a non-linear term. For this reason the GPE is also known as
“non-linear Schrödinger equation”.

Substituting in eq. (A.2) the potential described by eq. (A.1), and reordering the
terms, we get

i~
∂Ψ(r, t)

∂t
=

[
− ~2

2m
∇2 + V0(t) +

1

2
m(ωr(t)

2r2 + ω2
xx

2)

]
Ψ(r, t) + g|Ψ(r, t)|2Ψ(r, t),

(A.3)

where the term in square bracket is called lineal term, and the term g|Ψ(r, t)|2 is
called non-lineal term.

A.3 Dimensionless Gross-Pitaevskii equation

It is useful to work with a dimensionless version of eq. (A.3), following the reference
[85] to do so, we introduce the dimensionless variables

t̄ ≡ t/ts and r̄ ≡ r/rs, (A.4)

where ts = 1/ω0
r = 1/ωr and rs =

√
~

mωr
. In this section, for simplicity, we going to

change the symbol ω0
r to ωr.

Dividing by N the normalization condition, gives

1 =

∫
|Ψ(r, t)|2 1

N
dr =

∫
|Ψ(r, t)|2 r

3
s

N
dr̄ ≡

∫
|Ψ̄(r̄, t̄))|2 dr̄

where we get the definition Ψ̄(r̄, t̄) ≡ r
3/2
s /N1/2Ψ(r, t).

To begin substituting these new variables into the GPE, we need to develop relations
for their derivatives. Using the chain rule,

1

dt
=

1

ts

1

dt̄
,

1

dr
=

1

rs

1

dr̄
and ∇ =

1

rs
∇̄.

Introducing these relations into eq. (A.3) we obtain

i~ωr
∂Ψ̄(r̄, t̄)

∂t̄
=(

− ~2

2mr2
s

∇̄2 +
1

2
mr2

sω
2
r

(
ωr(t̄)

2

ω2
r

r̄2 +
ω2
x

ω2
r

x̄2

)
+ V0(t) + g

N

r3
s

|Ψ̄(r̄, t̄)|2
)

Ψ̄(r̄, t̄),
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which we divide by ~ωr to finally obtain the following dimensionless GPE,

i
∂Ψ̄(r̄, t̄)

∂t̄
=

(
−1

2
∇̄2 +

1

2

(
ω̄r(t̄)

2r̄2 + ω̄2
xx̄

2
)

+ V̄0(t̄) + k|Ψ̄(r̄, t̄)|2
)

Ψ̄(r̄, t̄), (A.5)

where ω̄x = ωx/ωr, k = 4πaddN/rs, V̄0(t̄) = [1 + α cos(Ω/ωr t̄)]V
0

0 /ωr and ω̄r(t̄)
2 =

1 + α cos(Ω/ωr t̄). We highly recommend check this coefficients.

From this point, we are going to work exclusively with equation (A.5) (unless we
explicitly state otherwise) so we are going to refer to it as dimensionless GPE, or
simply GPE. Also, for the sake of notation simplicity, we remove all the “bars” ·̄
from all variables in this equation.

A.4 Gross-Pitaevskii equation in two dimensions

If we have a disk-shape condensate with strong confinement along the x-direction
(that is ωx � ωr) the 3D GPE can be reduced to a two-dimensional (2D) GPE.

This can be done assuming that the time evolution does not generate excitations
along the x-axis since these excitations require much larger energies, of the order of
~ωx to be generated, in contrast to excitations along the y and z-axis whose energies
are of the order of ~ωr.

In this case and assuming that the system is weakly interacting, an useful ansatz
for the GPE wavefunction is written in the following way

Ψ(x, y, z, t) ≡ ψ1(x)ψ2(y, z, t) =
(ωx
π

)1/4

e−ωxx2/2ψ2(y, z, t) (A.6)

where ψ1(x) is the ground state of the harmonic oscillator in x-dimension.

Substituting eq. (A.6) in the dimensionless GPE eq. (A.5) we find

iψ1
∂ψ2

∂t
=

− ψ1

2
∇2ψ2 −

ψ2

2

∂2ψ1

∂x2
+
ψ2

2
ω2
xx

2ψ1 +

(
1

2
ωr(t)

2r2 + V0(t) + k|ψ1|2|ψ2|2
)
ψ1ψ2,

which we multiply by ψ∗1, the conjugate of ψ1. After we integrate over x and using
that

∫
|ψ1(x)|2 dx = 1 we obtain

i
∂ψ2

∂t
=

(
−1

2
∇2 + C +

1

2
ωr(t)

2r2 + V0(t) + β|ψ2|2
)
ψ2, (A.7)

where

C = −1

2

∫ ∞
−∞

ψ∗1
∂2ψ1

∂x2
dx+

ω2
x

2

∫ ∞
−∞

x2|ψ1|2dx and β = k

∫ ∞
−∞
|ψ1|4dx = k

√
ωx
2π
.
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It is no necessary to calculate C, because this GPE is time-transverse invariant.
Therefore we can replace ψ2 → ψe−iCt and drop the constant C in the right equation
part.

A.5 Gross-Pitaevskii equation in one dimension

In the case in which radial confinement is much stronger than the axial confinement
(that is, ωr � ωx), the corresponding condensate is very elongated along the x-
direction, the so called cigar-shaped condensate (figure 2.11). In this situation, the
3D GPE can be reduced to a 1D GPE.

Just as in the 2D case, this can be done assuming that the time evolution does
not generate excitations along the r-axis since these excitations have much larger
energies, of the order of ~ωr, compared to excitations along the x-axis with energies
of the order of ~ωx.

Once again, a useful ansatz for Ψ is of the form

Ψ(x, y, z, t) ≡ ψ1(x, t)ψ2(y, z, t) = ψ1(x, t)

(
ωr(t)

π

)1/2

e−ωr(t)(y2+z2)/2 (A.8)

where ψ2(y, z, t) is the ground state of the 2D harmonic oscillator, which is just the
product of the 1D harmonic oscillator for y and z-dimension with

∫
|ψ2(y, z, t)|2 dydz =

1.

Substituting eq. (A.8) in (A.5) we find

iψ1
∂ψ2

∂t
+ iψ2

∂ψ1

∂t
=

− ψ2

2

∂2ψ1

∂x2
− ψ1

2
∇2ψ2 +

ψ1

2
ωr(t)

2r2ψ2 +

(
1

2
ω2
xx

2 + V0(t) + k|ψ1|2|ψ2|2
)
ψ1ψ2,

which we multiply by ψ∗2, the conjugate of ψ2. After we integrate over y and z, using∫
|ψ2(y, z, t)|2 dydz = 1 we obtain

i
∂ψ1

∂t
=

(
−1

2

∂2

∂x2
+ C +

1

2
ω2
xx

2 + V0(t) + β|ψ1|2
)
ψ1,

where

C = −1

2

∫ ∞
−∞

∫ ∞
−∞

ψ∗2

(
∂2ψ2

∂y2
+
∂2ψ2

∂z2

)
dydz

+
ωr(t)

2

2

∫ ∞
−∞

∫ ∞
−∞
|ψ2|2(y2 + z2)dydz − i

∫ ∞
−∞

∫ ∞
−∞

ψ∗2
∂ψ2

∂t
dydz

and β = k

∫ ∞
−∞

∫ ∞
−∞
|ψ2|4dydz =

kωr(t)

2π
.
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It is no necessary to calculate C because this GPE is time-transverse invariant.
Therefore we can replace ψ1 → ψe−i

∫
Cdt and drop C in the right part of the equa-

tion. After this point, we are going to substitute β as simply βωr(t) with β = 2addN
rs

,
to obtain the very important equation

i
∂ψ(x, t)

∂t
=

[
−1

2

∂2

∂x2
+

1

2
ω2
xx

2 + V0(t)

]
ψ(x, t) + βωr(t)|ψ(x, t)|2ψ(x, t). (A.9)

A.6 GPE 1D solutions

A.6.1 GPE 1D stationary solution under Thomas-Fermi ap-
proximation

Before to start to applying linear stability analysis, which lead to dynamic solutions,
we present the stationary solution (α = 0) under the Thomas-Fermi approximation.

In the absence of modulation α = 0, taking in mind that we are under the dimen-
sionless frame, we get that the factors in equation (A.9) become ωr(t) = 1 and
V0(t) ≡ V0 = V 0

0 /ωr.

Similar to the procedure presented in section 1.3, we use separation of variables
method to propose a solution of the form ψ(x, t) = ψ0(x)e−iµt/~ written as the
product of a time-function and space-function. From the separation of variables
method the integration constant µ emerges, but later it is identified as the chemical
potential. Here we define the dimensionless parameter µ = ~ωrµ̄ so we get ψ(x̄, t̄) =
ψ0(x̄)e−iµ̄t̄.

The separable variable solution is possible because we are searching the ground state
ψ0(x), which is stationary and therefore time-independent. Here the exponential
term carries the time dependence of the wavefunction.

The resulting time-independent GPE after substituting this separable variable so-
lution in the 1D GPE equation (A.9) is

µψ0(x) =

[
−1

2

∂2

∂x2
+

1

2
ω2
xx

2 + V0

]
ψ0(x) + β|ψ0(x)|2ψ0(x) (A.10)

which is time independent.

The Thomas-Fermi approximation consists in neglecting the kinetic term in equation
(A.10), that is, the second derivative with respect to x, resulting into an algebraic
equation.

After the Thomas-Fermi approximation, we get the following analytic solution for
the density n(x) = |ψ0(x)|2,

|ψ0(x)|2 = n(x) =
1

β
(µ− V0 −

1

2
ω2
xx

2). (A.11)

To make physical sense, this quantity is defined to be strictly positive and hence it
is set equal to zero for every point where it results in a negative value. Then the
density is zero when the absolute value of x is greater than
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RTF =
1

ωx

√
2(µ− V0) (A.12)

which is called Thomas-Fermi radius.

This approximation, although somehow rough, provides a very good description of
a stationary BEC. Evidently, it can be avoided to obtain better results, but the
solution should be computed numerically to solve equation (A.10).

A.6.2 GPE homogeneous solution

Now we consider the case with the modulation of the radial frequency, therefore
α 6= 0. Although the modulation α is different from zero, it always remains small,
therefore we can approximate ωr(t) =

√
1 + α cos(Ωt) ≈ 1+α cos(Ωt)/2 with Taylor

series around α = 0.

With this approximation and additionally the Thomas-Fermi approximation to ne-
glect the kinetic term −1

2
∂2

∂x2
ψ(x, t), we obtain an analytic solution for equation

(A.9) as

ψh(x, t) = ψ0(x) exp
[
−iµt− iV0α sin(Ωt)/Ω− iβ|ψ0(x)|2α sin(Ωt)/2Ω

]
. (A.13)

The subscript h stands for “homogeneous”, or rather “spatially homogeneous”,
which is another way of stating that we are neglecting the kinetic term. To ver-
ify that it is a solution, we substitute the homogeneous solution in both sides of
equation (A.9), neglecting the kinetic term, we find that

iψ0(x) exp[∗]
[
−iµ− iV0α cos(Ωt)− iβ|ψ0(x)|2α cos(Ωt)/2

]
=[

1

2
ω2
xx

2 + V0(1 + α cos(Ωt))

]
ψ0(x) exp[∗]+β(1+α cos(Ωt)/2)|ψ0(x)|2ψ0(x) exp[∗],

where we have defined exp[∗] ≡ exp [−iµt− iV0α sin(Ωt)/Ω− iβ|ψ0(x)|2α sin(Ωt)/2Ω].
After rearranging the terms we finally obtain

µψ0(x) =

[
1

2
ω2
xx

2 + V0

]
ψ0(x) + β|ψ0(x)|2ψ0(x).

which is true by equation (A.10) under the Thomas-Fermi approximation.

A.7 Linear stability analysis

We phenomenologically know that the periodic modulation of the non-lineal term
can induce a spontaneous spatial-symmetry breaking of this “homogeneous” state,
resulting in a spatial pattern whose amplitude is time-dependent [78]. This pattern
is proposed of the form
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ψ(x, t) = ψh(x, t)ψp(x, t) = ψh(x, t) [1 + A(t) cos(kx)] (A.14)

where A(t) is complex function which is time-dependent only and its amplitude is
small |A(t)| � 1. The k = 2π/λ is vector wave of the spatial pattern.

The next step is to substitute the proposal (A.14) into the equation (A.9), giving

iψh
∂ψp
∂t

+ iψp
∂ψh
∂t

=

[
−1

2

∂2

∂x2
+

1

2
ω2
xx

2 + V0(t)

]
ψpψh + βωr(t)|ψh|2|ψp|2ψpψh

= ψp

[
−1

2

∂2

∂x2
+

1

2
ω2
xx

2 + V0(t)

]
ψh + βωr(t)|ψh|2ψpψh

− ∂ψh
∂x

∂ψp
∂x
− ψh

2

∂2ψp
∂x2

+ βωr(t)|ψh|2(|ψp|2 − 1)ψpψh

where the two penultimate terms of the last equation comes from applying the
Laplacian ∂2(ψpψh)/∂x

2 and the second and last terms of the last equation are a
decomposition which sum up to the second term of the right side of the first equation.

If we observe carefully this last expression, the homogeneous part ψh follows the
equation (A.9), then we can cancel the second term of the left side with the first
line of the right hand, giving

iψh
∂ψp
∂t

= − ∂ψh
∂x

∂ψp
∂x
− ψh

2

∂2ψp
∂x2

+ βωr(t)|ψh|2(|ψp|2 − 1)ψpψh

here, we can approximate ∂ψh/∂x = 0, and we can substitute ∂ψp/∂t = ˙A(t) cos(kx),
∂2ψp/∂x

2 = −A(t)k2 cos(kx), |ψh|2 = |ψ0(x)|2, |ψp|2 = 1 + 2Re[A(t)] cos(kx) +
A2(t) cos2(kx) and ψp = 1 + A(t) cos(kx) resulting in

i ˙A(t) cos(kx) =

k2

2
A(t) cos(kx)+βωr(t)|ψ0(x)|2(2Re[A(t)] cos(kx)+A2(t) cos2(kx))(1+A(t) cos(kx))

i ˙A(t) =
k2

2
A(t) + βωr(t)|ψ0(x)|2(2Re[A(t)] + A2(t) cos(kx))(1 + A(t) cos(kx)),

then, we perform a linear stability analysis which consist to keep the first order
elements respect to A(t), we obtain

i ˙A(t) ≈ k2

2
A(t) + 2β|ψ0(x)|2ωr(t)Re[A(t)].

At this point we have an inconsistency, the left side only depends on time, while
the right side depends on both time and x, due to the presence of the term |ψ0(x)|2.
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We can patch this problem by assuming that A(t) “interacts” only with the average
density of the condensate, then |ψ0(x)|2 ≈ ρ̄. We will calculate this average density
later. Then, we get

i ˙A(t) ≈ k2

2
A(t) + 2βρ̄ωr(t)Re[A(t)].

Since A(t) is a complex function, we separate it into its real and imaginary parts
A(t) = Re[A(t)] + iIm[A(t)] and we get the following two equations

d

dt
Re[A(t)] =

k2

2
Im[A(t)]

− d

dt
Im[A(t)] =

k2

2
Re[A(t)] + 2βρ̄ωr(t)Re[A(t)].

Applying time derivation to the first equation, and then substituting the second into
the first after derivation, we get

d2

dt2
Re[A(t)] =

k2

2

(
−k

2

2
Re[A(t)]− 2βρ̄ωr(t)

)
Re[A(t)]

=

(
−k

4

4
− k2βρ̄− k2βρ̄

α

2
cos(Ωt)

)
Re[A(t)].

Rearranging the terms, to the left side we obtain

d2

dt2
Re[A(t)] +

(
k4

4
+ k2βρ̄+ k2βρ̄

α

2
cos(Ωt)

)
Re[A(t)] = 0, (A.15)

which is an equation similar to the standard Mathieu equation

d2x

dτ 2
+ (a+ ε cos(2τ))x = 0, (A.16)

identifying

x = Re[A(t)]

τ =
Ωt

2

a =
k4

4
+ k2βρ̄

ε =
k2

2
βρ̄α.

where a and ε are constant parameters, while x is a dependent variable and τ is
time.
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The only term which is missing to calculate is the average density of the condensate
ρ̄ which we calculate as follows

ρ̄ =
1

2RTF

∫ RTF

−RTF

|ψ0(x)|2dx =
2

3β
(µ− V0), (A.17)

which we can substitute where it is necessary.

A.8 Mathieu equation and the stability chart

The form of Mathieu’s equation (A.16) is very simple, it is a linear second-order
ordinary differential equation (ODE), which differs from the one corresponding to
a simple harmonic oscillator in the existence of a time-varying (periodic) forcing of
the stiffness coefficient a.

So, the simple harmonic oscillator is obtained for ε = 0, and the stiffness parameter
a corresponds then to the square of its natural frequency, therefore

√
a. This oscilla-

tor performs free vibrations around the stable equilibrium position x = 0. However,
if the stiffness term contains the parametric excitation ε 6= 0, the motion can stay
bounded (this case is referred to as stable) or the motion becomes unbounded (this
case is referred to as unstable). The occurrence of one of these two outcomes de-
pends on the combination of the parameters a and ε. When presented graphically,
this gives the so-called stability chart with regions of stability and regions of insta-
bility (tongues) separated by the so-called transition curves, enabling one to clearly
determine the resulting behavior and the stability property mentioned.

The stability chart of Mathieu’s equation with several tongues can be obtained
by using numerical integration in conjunction with Floquet theory as presented in
reference [84].

In this section, we will just present some analytically expressions for the first and
second tongues transition curves (contours) at small excitation ε ≈ 0. All these
under the Poincaré-Lindstedt method, which allows to find convergent series ap-
proximations of periodic solutions by using a series expansion and the periodicity of
the solution [86].

After apply Floquet theory (appendix 2 of [86]) to Mathieu’s equation (eq. A.16), we
conclude that for

√
a = m,m = 1, 2, ... we have stability for ε in the neighbourhood

of zero. These points works as seeds where the stability tongues will grown.

If ε = 0, the solutions of Mathieu’s equation (eq. A.16) are known, a linear combi-
nation of cos(mt) and sin(mt) which are 2π/m-periodic, then

x(t) = y1 cos(mt) + y2 sin(mt)

ẋ(t) = −my1 sin(mt) +my2 cos(mt),

where theirs respective amplitudes y1 and y2 are constants determined by the initial
values.
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For ε ≈ 0, we propose the solution can still be written in this form where both
amplitudes are now functions of time. So the proposed solution is

x(t) = y1(t) cos(mt) + y2(t) sin(mt) (A.18)

ẋ(t) = −my1(t) sin(mt) +my2(t) cos(mt). (A.19)

Here, we are assuming that these Mathieu’s equation (eq. A.16) solutions are peri-
odic into the neighborhood of ε ≈ 0. But the period T (ε) will depend on the small
parameter ε. Then, we shall expand the period with respect to the small parameter
ε. For convenience, we express this period ε-dependence as a = m2 − εβ with β a
constant independent of ε.

For solve this equations system, we need transform it into two first-order ODEs.
The process we need to follow is transform x, ẋ → ẏ1, ẏ2. First, we substitute
the expressions for x and ẋ (after applying another differentiation) into Mathieu’s
equation (eq. A.16) to produce an equation for the amplitudes y1(t) and y2(t)

− m2 [y1 cos(mt) + y2 sin(mt)]

+ m [−ẏ1 sin(mt) + ẏ2 cos(mt)]

+ a [y1 cos(mt) + y2 sin(mt)] = ε cos(2t) [y1 cos(mt) + y2 sin(mt)] .

Before to continue, we can use a = m2− εβ to reduce the first and third left-handed
terms. After that, we obtain the first transformed equation. Another requirement
from we can obtain the second transformed equation is that the differentiation of x
must produce an expression which equals ẋ. So we find that

ẏ1 cos(mt) + ẏ2 sin(mt) = 0.

Solving this last equation for ẏ2 or ẏ1, and substituting into the first transformed
equation, allow us to find expressions for ẏ1 or ẏ2 respectively as

ẏ1 = − ε

m
[β − cos(2t)] [y1 cos(mt) + y2 sin(mt)] sin(mt) (A.20)

ẏ2 =
ε

m
[β − cos(2t)] [y1 cos(mt) + y2 sin(mt)] cos(mt) (A.21)

which are equivalent to the Mathieu’s equation.

Then we can integrate them to obtain

y1(τ) = y1(0)− ε

m

∫ τ

0

[β − cos(2t)] [y1 cos(mt) + y2 sin(mt)] sin(mt)dt

y2(τ) = y2(0) +
ε

m

∫ τ

0

[β − cos(2t)] [y1 cos(mt) + y2 sin(mt)] cos(mt)dt,
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but we appeal for the periodicity of the the solution y(τ) = y(τ + 2π/m) we obtain
then two conditions

∫ 2π/m

0

[β − cos(2t)] [y1 cos(mt) + y2 sin(mt)] sin(mt)dt = 0 (A.22)∫ 2π/m

0

[β − cos(2t)] [y1 cos(mt) + y2 sin(mt)] cos(mt)dt = 0. (A.23)

For the fist tongue we have that m = 1, solving the integrals supposing y1 and y2

are constants, we obtain that y2(β+1/2) = 0 and y1(β−1/2) = 0, then the periodic
solutions exist if a ≈ 1± 1/2ε. For the second tongue we have that m = 2, solving
the integrals supposing y1 and y2 are constants, we obtain that β = 0. Then we
need to expand the period to the next order, expressed as a ≈ 1 − εβ − ε2γ. After
apply this condition to the system equation, we obtain the periodic solutions exist
if a ≈ 4− 1/48ε2 and a ≈ 4 + 5/48ε2.

A.9 Faraday Waves

Assuming then that the values of α and Ω of the modulation of the radial frequency
are appropriate such that the excitation is stable and therefore, they generate a value
of the valid wave number k, the solution is finally observed as equation (A.14), then
the density profile of the condensate, observable in the experiments, is given by

ρ(x, t) ≈ |ψ0(x)|2 (1 + 2Re[A(t)] cos(kx)) (A.24)

which is the Faraday wave, a spatial pattern which in time its amplitude oscillates
as a function of Re[A(t)].
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Appendix B

Codes

B.1 Algorithm to calculate the painting function

The code for the calculation of the painting function f(t) to the case to obtain a
harmonic potential is included. Also this algorithm loads the points to an Arbitrary
Wave Generator Standford DS345 due to the GPIB conector.

1

2 import visa

3 import numpy as np

4 import pylab as pl

5 import struct

6 from scipy.integrate import quad

7 from scipy.interpolate import interp1d

8

9 #Code developed by Eduardo Padilla at the LMU -IFUNAM

10 #Version 1.0

11

12 #Number of points in the total waveform

13 Np = 50

14

15 #Heavside

16 def Heav(x):

17 return 1 * (x > 0)

18

19 #Target painting function

20 def ThomasFermi(x):

21 return (1-x**2)*Heav(1-abs(x))

22

23 #Waveform generation

24 X=np.linspace(-1,1,Np)

25 Z=np.zeros(Np)

26

27 for i in range(Np):

28 Z[i]=quad(ThomasFermi ,-1,X[i])[0]

29

30 res=np.concatenate ((X,list(reversed(X))[1:Np]))

31 res2=np.concatenate ((Z/Z[-1],1+Z[1:Np]/Z[-1]))

32

33 #Visualization part , to generate a graph in JupyterNotebook

34 f2 = interp1d(res2 ,res , kind=’cubic’)

141
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35

36 xnew = np.linspace(0, 2, num=Np+1, endpoint=True)

37 xnew = xnew [0:Np]

38 ynew = f2(xnew)

39

40 #We prepare the information that we are going to send to Standford

WaveGenerator

41

42 samplerate = 40e6 # Samples per second

43 #amplitude = 5.0 # V

44 #offset = 3.0 # V

45

46 V = np.around (2047.0* ynew)

47 pl.plot(np.arange(len(ynew))/samplerate *1e9 ,V,’.’)

48 pl.xlabel("Time [ns]")

49 pl.ylabel("Voltage [V]")

50

51 pl.show()

52

53 #Begins the remote comunication

54 rm = visa.ResourceManager ()

55 #Yo can change the default adress

56 inst = rm.open_resource(’GPIB0 ::19:: INSTR’)

57

58 # Query the ID string of the signal generator to check

59 # whether the remote communication is normal

60 print("Informacion del generador")

61 print(inst.query("*IDN?"))

62

63 AMP =1.0

64 OFFSET =1.5

65

66 inst.write("*CLS") # clears registers

67 inst.write("*SRE 16") # enables "message available bit"

68

69 inst.write("AMPL " + str(AMP) + "VP") # sets amplitude

70 inst.write("OFFS %f" % OFFSET) # sets offset

71

72 #creates binary data from V, including the checksum

73 #creates the first byte

74 chksum = int(V[0])

75 b = struct.pack(’h’, int(V[0]))

76 #then the others bytes

77 for i in range (1,len(V)):

78 b += struct.pack(’h’, int(V[i]))

79 chksum += V[i]

80 #Add the checksum to the data

81 b += struct.pack(’h’, int(chksum))

82

83 # the first 0 tells the format will be point (1 to be vector format

)

84 # tells the machine that Np points will be sent

85 inst.write("LDWF? 0,%i"%Np)

86 #It’s necessary to read the anwser befores to send the data

87 print("El generador esta listo para recibir =%s"%inst.read())

88

89 #Send the binary data to the generator

90 r=inst.write_raw(b)
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91

92 print("El generador recibio %i bytes (2 byte por dato mas checksum)

de manera correcta."%r[0])

93

94 # Turn on the output

95 inst.write("FUNC5\n")
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